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Preface

The present volume is devoted to the second edition of the international Work-
shop on Internet and Network Economics (WINE), an interdisciplinary confer-
ence intending to provide a forum for researchers as well as practitioners to
exchange innovative ideas and to be aware of each other’s efforts and results.
This second edition of the conference (WINE 2006) was hosted by the Research
Academic Computer Technology Institute, at the University of Patras, December
15-17, 2006.

The volume contains all contributed papers presented at WINE 2006 (ordered
according to the Scientific Program of the workshop), together with the distin-
guished invited lectures of Abraham Neyman (Hebrew University of Jerusalem,
Israel), Mihalis Yannakakis (Columbia University, USA) and Xiaotie Deng (City
University of Hong Kong, Hong Kong, SAR, China). This year WINE was un-
der the auspices of the European Association for Theoretical Computer Science
(EATCS).

In response to the Call for Papers, the Program Committee received 79 sub-
missions. Among the submissions, there were 15 papers with at least one coau-
thor that was also a PC member of WINE 2006. For these PC—coauthored papers,
an independent subcommittee (Marios Mavronicolas Chair, Elias Koutsoupias,
Eva Tardos) made the judgement, and eventually seven papers were proposed for
inclusion in the scientific program. For the remaining 64 (non-PC-coauthored)
papers, the PC of WINE 2006 conducted a thorough evaluation and electronic
discussion, and eventually selected 25 papers for inclusion in the scientific pro-
gram.

We wish to thank the creators of the EasyChair System, a free conference
management system provided and supported by the group of Professor Voronkov,
which significantly assisted the work of the Program Committee. Finally, we
wish to thank the Research Academic Computer Technology Institute for kindly
offering its facilities and human resources for the successful organization of WINE
2006.

December 2006 Paul Spirakis (Program and Organizing Chair)
Marios Mavronicolas (Program Co—chair)
Spyros Kontogiannis (Organizing Co—chair)
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Recent Developments in Learning and
Competition with Finite Automata
(Extended Abstract)

Abraham Neyman

Institute of Mathematics and Center for the Study of Rationality,
The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
aneyman@math.huji.ac.il
www.ratio.huji.ac.il/neyman

Consider a repeated two-person game. The question is how much smarter should
a player be to effectively predict the moves of the other player. The answer de-
pends on the formal definition of effective prediction, the number of actions each
player has in the stage game, as well as on the measure of smartness. Effec-
tive prediction means that, no matter what the stage-game payoff function, the
player can play (with high probability) a best reply in most stages. Neyman and
Spencer [4] provide a complete asymptotic solution when smartness is measured
by the size of the automata that implement the strategies.

Let G = (I, J, g) be a two-person zero-sum game; I and J are the set of actions
of player 1 and player 2 respectively, and g : I x J — R is the payoff function to
player 1. Consider the repeated two-person zero-sum game G(k, m) where player
1’s possible strategies are those implementable by an automaton with k states
and player 2’s possible strategies are those implementable by an automaton with
m states. We say that player 2 can effectively predict the moves of player 1 if for
every reaction function r : I — J player 2 has a strategy (in G(k,m)) such that
for every strategy of player 1 the expected empirical distribution of the action
pairs (4, j) is essentially supported on the set of action pairs of the form (i, r(%)).
A recent result of Neyman and Spencer characterizes the asymptotic relation of
m = my and k so that player 2 can effectively predict the moves of player 1.
This asymptotic relation is: lim inf logkm’“, as k goes to infinity, is at least the
minimum of log |I| and log|J]|. It follows that the value of G(k,my) converges
to max;er minjey g(4,7) as k — oo and liminfy_, logkm’“ > min(log |I],log|J|).

An open problem (see [2]) is the quantification of the feasible “level of pre-

log my,

diction” when the limit of °%™* equals 6 and 0 < 6 < min(log |I|,log|J]). For
example, do the values of G(k, my) converge as k — oo and limy_, o logkm"' =0,
and, for those values of 6 for which the limit exists, what is the limit of the
values as a function of the stage game G and 67 It is known that the value of
G(k,my) converges, as my > k — oo and bgkmk — 0, to the value of the stage
game [1].

The level of prediction, where player 1 is either (an uncertain periodic) nature
or a player that does not observe the moves of player 2, has a complete asymptotic
characterization [3]. The value of the two-person zero-sum repeated game, where

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 1-2, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 A. Neyman

player 1’s possible strategies are those implementable by oblivious automata of
size k and player 2’s possible strategies are those implementable by automata of
size m, converges, as k goes to infinity and logkm goes to 6 > 0, to a limit v(6). The
limit v(0) is characterized by the data of the stage game G = (I, J, g). It equals
the maxmin of Eqg(i, j) where the max is over all mixed stage actions p and the
min is over all distributions @ on action pairs with marginal p on I, denoted @7,
and H(Qp) + H(Qy) — H(Q) < 0, where H is the entropy function. This result
remains intact when player 2’s possible strategies are those implementable by
automata with time-dependent mixed actions and mixed transitions.

Another question is how long it takes the smarter player to effectively pre-
dict the moves of the other player. We study this question by analyzing the
T-stage repeated game G7 (k, m) where player 1’s (respectively, player 2’s) possi-
ble strategies are those implementable by an automaton with & (respectively, m)
states. It is known that when player 2 is “supersmart” (m = oo) and T >> klogk,
player 2 can effectively predict the moves of player 1 [5]. Formally, the values of
the two-person zero-sum games G7*(k, 0o) converge to max;er minje s g(i,j) as
k — oo and lim supy,_, kl;f ¥ = 0. It is conjectured in [2] that the values of the
two-person zero-sum games G* (k,; 00) converge to the value of the stage game

: k1
G as k — oo and limsup;,_,,, " 7" =00
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Dynamic Mechanism Design*

Davide Bilo!, Luciano Guala', and Guido Proietti®+2

! Dipartimento di Informatica, Universita di L’Aquila, Italy
2 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy
{davide.bilo, guala, proietti}@di.univaq.it

Abstract. In this paper we address the question of designing truthful
mechanisms for solving optimization problems on dynamic graphs. More
precisely, we are given a graph G of n nodes, and we assume that each
edge of G is owned by a selfish agent. The strategy of an agent consists
in revealing to the system the cost for using its edge, but this cost is not
constant and can change over time. Additionally, edges can enter into
and exit from G. Among the various possible assumptions which can be
made to model how these edge-cost modifications take place, we focus on
two settings: (i) the dynamic, in which modifications are unpredictable
and time-independent, and for a given optimization problem on G,
the mechanism has to maintain efficiently the output specification and
the payment scheme for the agents; (ii) the time-sequenced, in which
modifications happens at fixed time steps, and the mechanism has to
minimize an objective function which takes into consideration both
the quality and the set-up cost of a new solution. In both settings, we
investigate the existence of exact and approximate truthful mechanisms.
In particular, for the dynamic setting, we analyze the minimum spanning
tree problem, and we show that if edge costs can only decrease, then
there exists an efficient dynamic truthful mechanism for handling a
sequence of k edge-cost reductions having runtime O(hlogn + klog* n),
where h is the overall number of payment changes.

Keywords: Algorithmic Mechanism Design, On-line Problems, Dy-
namic Algorithms, Approximate Mechanisms.

1 Introduction

Algorithmic mechanism design (AMD) is concerned with the computational com-
plexity of implementing, in a centralized fashion, truthful mechanisms for solv-
ing optimization problems in multi-agents systems [13]. AMD is by now one of
the hottest topic in theoretical computer science, especially since of the game-
theoretic nature of Internet. As a result, many classic network optimization
problems have been resettled and solved under this new perspective [3,4,7,8,9].

* Work partially supported by the Research Project GRID.IT, funded by the Italian
Ministry of Education, University and Research.

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 3-15, 2006.
© Springer-Verlag Berlin Heidelberg 2006



4 D. Bilo, L. Guala, and G. Proietti

Apparently, however, the canonical approach is that of dealing with these prob-
lems by means of one-shot mechanisms, whose natural computational counter-
part are static graph problems. This is in contrast with the intrinsic dynamicity
of Internet’s infrastructure, where links and node can rapidly appear, disappear,
or even change their characteristics. Thus, surprisingly enough, there is a lack
of modeling for those situations in which agents need to adapt their strategies
over time, according to sudden changes in their owned components. To the best
of our knowledge, the only effort towards this direction has been done in the
framework of the so-called on-line mechanism design (OMD) [6,14]. There, the
dynamic aspect resides in the fact that agents arrive and depart once over time,
and their strategy consist of a single announcement of a bidding value for a
time interval included between the arrival and the departing time. However, the
limitation of OMD is that agents are not allowed to play different strategies over
time, thus preventing to model those situations in which bidding values need to
be continuously adjusted.

In this paper, we aim exactly to fill this gap, by exploring the difficulties and
the potentialities emerging in this new challenging scenario. In doing that, we
combine some of the theoretical achievements of the AMD with techniques which
are proper of dynamic and on-line algorithms. The result of this activity is what
we call as dynamic mechanism design (DMD). As a paradigmatic framework, we
consider the situation in which each agent owns an edge of a given underlying
graph G of n nodes, and its strategy consists in revealing to the system the cost
(which can change over time) for using its edge. We focus on two main realistic
scenarios:

1. In the first scenario, we consider the case in which edge costs are subject
to sudden changes, due to boundary conditions alterations. In the extreme
case, an edge might become unavailable to the system, due to a failure for
instance. On the opposite side, some new edge might become available. All
these variations are presented on-line to the system, which is completely
unaware of possible future changes. Moreover, we will assume that each
agent is unaware about other agents’ types and strategies, and thus it can-
not observe the global status of the system.! We feel that this is particu-
larly attractive in an Internet setting, where an agent may not even know
which other agents are participating to the mechanism. From an algorith-
mic point of view, this translates into a continuously evolving input graph,
over which a solution to a given optimization problem has to be main-
tained. In other words, we need to design a fully dynamic mechanism which
updates efficiently both the output specification and the corresponding pay-
ment scheme for the agents. In the rest of the paper, we will refer to this as
the dynamic scenario. What is interesting here is that while classic dynamic
graph algorithms can be used for the maintenance of the output specifi-
cation, as far as the payment scheme updating is concerned, this defines

! Notice that the case in which an agent can observe the strategies of the other
agents transforms our problem into a repeated game, for which the existence of a
dominating strategy is unknown.
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novel dynamic graph problems, which would make no sense in a canonical
centralized framework. In this paper, as a starting point, we deal with a
basic graph problem that has served as a case study for several papers on
AMD, namely the minimum spanning tree (MST) problem. After observ-
ing that efficient dynamic MST algorithms in [10] can be turned into an
efficient dynamic mechanism for handling a sequence of k edge-cost mod-
ifications having runtime O(knlog®n), we will show that for the case in
which edges can only become less expensive, then the mechanism runtime
drops to O(hlogn + klog® n), where h is the overall number of payment
changes. We emphasize that this edge-cost lowering scenario is interesting
because of the competitive nature of Internet.

2. In the second scenario, we consider the case in which the graph evolves in
a sequence of time steps, and every agent has a specific cost for using its
edge in each of these steps. Here, the time-depending modifications of the
graph suggest that the mechanism’s goal should now be the composition of
two objectives: maintaining a good (not necessarily optimal) solution at a
low (not necessarily minimal) cost of setting it up. Thus, on a sequence of
graph changes, the objective function is now given by the overall cost of the
sequence of solutions, plus the overall set-up cost. This approach is inspired
to that proposed in the past in [11] to model the fact that on an on-line
sequence of changes, it is important to take care of the modifications on
the structure of the solution, since radical alterations might be too oner-
ous in terms of set-up costs. In the rest of the paper, we will refer to this
as the time-sequenced scenario. Here, on a positive side, we will show that:
(i) if each set-up cost is upper bounded by the initial one and changes are
presented on-line to the system, then a p-approximate monotone algorithm
for a given optimization problem IT on G, translates into an approximate
truthful mechanism for I which on a sequence of graph changes of size k
has an approximation ratio of max{k, p}; (ii) if the underlying graph opti-
mization problem is utilitarian and polynomial-time solvable, and changes
are presented off-line to the system, then there exists a VCG-like truthful
mechanism for solving optimally the sequence, which can be computed in
polynomial time by means of a dynamic programming technique. On the
other hand, on a negative side, we will show that even if graph changes
are presented off-line to the system and set-up costs are uniform, then any
truthful mechanism which solves the problem by means of a divide et impera
paradigm (as explained in more detail in Section 6) cannot achieve a better
than k approximation ratio.

The paper is organized as follows: in Section 2 we give preliminary definitions;
after, in Section 3 we present the dynamic mechanism for the MST problem,
while in Section 4 we define formally the time-sequenced model; finally, in the last
two sections we give, respectively, positive and negative results on the existence
of time-sequenced truthful mechanisms.



6 D. Bilo, L. Guala, and G. Proietti

2 Preliminaries

Let a communication network be modeled by a graph G = (V,FE) with n
nodes and m edges. We will deal with the case in which each edge e € F is
controlled by a selfish agent a. holding a private information t., namely the
true type of a.. Only agent a. knows t.. Each agent has to declare a public
bid b. to the mechanism. We will denote by ¢ the vector of types, and by b
the vector of bids.

For a given optimization problem IT defined on G, let SOL(II) denote the
corresponding set of feasible solutions. We will assume that SOL(IT) does not
depend on the agents’ types. For each € SOL(II), an objective function is
defined, which depends on the agents’ types. A mechanism for II is a pair M =
(g9(b),p(b)), where g(b) is an algorithm that, given the agents’ bids, computes
a solution for I7, and p(b) is a scheme which describes the payments provided
to the agents. For each solution z, a. incurs a cost ve(t.,z) for participating
to x (also called wvaluation of a. w.r.t. x). Each agent tries to maximize its
utility, which is defined as the difference between the payment provided by the
mechanism and the cost incurred by the agent w.r.t. the computed solution. On
the other hand, the mechanism aims to compute a solution which minimizes the
objective function of IT w.r.t. to the agents’ types, but of course it does not
know t directly. In a truthful mechanism this tension between the agents and
the system is resolved, since each agent maximizes its utility when it declares its
type, regardless of what the other agents do.

Given a positive real function e(n) of the input size n, an (n)-approzimate
mechanism returns a solution whose measure comes within a factor €(n) from the
optimum. A mechanism has a runtime of O(f(n)) if g(-) and p(-) are computable
in O(f(n)) time. Moreover, a mechanism design problem is called utilitarian if
the objective function of IT is equal to ) . v(te, ). For utilitarian problems,
there exists a well-known class of truthful mechanisms, i.e., the Vickrey-Clarke-
Groves (VCOG) mechanisms.

In [2], Archer and Tardos have shown how to design truthful mechanisms for
another well-known class of mechanism design problems called one-parameter.
A problem is said one-parameter if (i) the true type of each agent a. can be
expressed as a single parameter t. € R, and (ii) each agent’s valuation has the
form ve(te, x) = te we(b), where we(b) is called the work curve for agent a., i.e.,
the amount of work for a. depending on the output specified by the mechanism
algorithm, which in its turn is a function of the bid vector b. When, for each
agent a., we(b) can be either 0 or 1, then the problem is also called binary
demand [12]. In [2] it is shown that for one-parameter problems, a sufficient
condition for truthfulness is given by a monotonicity property of the mechanism
algorithm. In particular, for a binary demand problem, such property reduces
to the following. Let b be the vector of bids of the agents, and let b_. denote
the vector of all bids besides b.; the pair (b_.,b.) will denote the vector b. If
we fix b_., a monotone algorithm A defines a threshold value 6.(b_., .A) such
that if a. bids no more than 6.(b_, .A), then e will be selected, while if a. bids
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above 0. (b_., A), e will not be selected.? Sometimes, we will write 0. (b_.) when
the algorithm A is clear from the context. The results in [2] imply that the only
truthful mechanism for a binary demand problem using an algorithm A is the
one-parameter mechanism M = (A, pA(+)), where A is required to be monotone,
and the payment p*(b) for each agent a. is defined as its threshold value if it
owns a selected edge, and 0 otherwise.

3 An Efficient Dynamic Mechanism for the MST
Problem

We start by addressing the problem of designing an efficient mechanism for
the fully dynamic MST problem. Since we assume that agents’ types change
over time, we allow the agents to declare a new bid to the mechanism at any
time. Recall that edge-cost changes are presented on-line to the system, which
is unaware of possible future changes, and that the agents do not know other
agents’ bids. The mechanism works as follows. At any time, whenever it receives
a new bid from an agent, it computes a new MST w.r.t. the new bid profile, and
it updates the payments exactly as the one-parameter mechanism for the MST
problem. Concerning the truthfulness of the mechanism, this follows from the
truthfulness of the one-parameter mechanism for the MST problem, and from
the fact that every agent is completely unaware of other agents’ bids.

On the other hand, concerning the time complexity, the mechanism has to
maintain: (i) an MST of G, and (ii) the corresponding payments. Moreover,
it has to support a payment query in O(1) time. To dynamically maintain an
MST, one can use the algorithm proposed in [10], which takes O(klog* n) time
for processing k edge-cost updates (deletions of edges are simulated by setting to
+o0 the cost of an edge). Thus, it remains to manage the payment scheme. We
remind that for binary demand problems, the payment provided to a. is equal
t0 B (b_e) if € is selected, and zero otherwise. This means it suffices to maintain
the threshold value 6.(b_.) for each e belonging to the current solution. We
emphasize that the algorithm in [10] can be straightforwardly used to accomplish
such a task, and from this it follows that there exists a truthful mechanism for the
fully dynamic MST which runs in O(knlog® n) time for processing k updates.
Improving this latter result is a challenging open problem. In the following, we
show that for the edge-cost decreasing case, in which edge costs are only allowed
to decrease, a significant improvement is possible. We argue this is not a very
special case, as it includes the well-known partially dynamic scenario, where only
edge insertions are allowed.

How to Maintain the Payments. Let G be a graph, and let T' be an MST of
G. For each non-tree edge f = (u,v) € E\ E(T), T(f) will denote the set of tree
edges belonging to the (unique) path in T between u and v. For each e € E(T),

2 As usual, we will assume that there always exists a feasible solution not containing
e, which implies that 0.(b—.,.A) is bounded.
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let Cr(e) = {f € E\E(T) | e € T(f)}. We denote by swap(e) the cheapest
non-tree edge in Cp(e).® Note that 0 (b_c) = bewap(e)-

Clearly, if a tree edge decreases its cost, no payment changes. Consider now
the situation in which a non-tree edge f decreases its cost from by to b;. Denote
by 7" the new MST, i.e., the MST computed w.r.t. the cost profile b = (b_, ;).
We have two cases:

Case 1: T" =T. Clearly, only the threshold of edges in T'(f) may change, since
for each ¢’ ¢ T(f), no edge in Cr(e’) has changed its cost. Moreover, the
threshold of e changes iff 0.(b_.) > V/;, and in this case the new threshold
value becomes 0.(b"_,) = V.

Case 2: 7" # T. Clearly T" = T \ {e} U {f}. Moreover, the payment for a.
becomes 0, while that for ay will be 0 (0" ) = b, since Cr(f) C Cr(e)U{e}.

Lemma 1. For every ¢’ € E(T")\ T'(e), 0 (V_,) = O (b_er).

Proof. The lemma trivially follows from the fact that for each ¢’ € E(T")\T"(e),
Cri(e') = Cr(e') and f ¢ Cr(e'). O

Lemma 2. The threshold of an edge ¢’ € T'(e) changes iff Oer(b_er) > be. In
this case, O (/) = be.

Proof. Let ¢’ € T'(e) be such that 0 (b_e/) > b.. Since e € Crpi(e’), then
(b)) < bo. We have to show that Af’ € Cz(e’) with by < be. For the sake
of contradiction, suppose that 3f’ € Crp/(e’) such that by < be. Then, we show
T was not an MST by proving that f' € Cr(e). Suppose that f’ ¢ Cr(e); then
T(f") =T'(f"), which implies 0. (b_e) < be.

It remains to show that if 0./ (b_e) < b, then 6. (b ) = 0 (b_e/). Notice
that if swap(e’) € Cr(e), then O/ (b_er) > be from the minimality of T, which
implies O (b—e) = be. Otherwise, swap(e’) € Cr/(e’). In both cases 0/ (V) <
Oer (b—er). Moreover, since Cr(e') C Cr(e’) U Cr(e) U {e}, then

0. (b )= min >
(0-er) FECT(e) { o} fecr(e )UCT(P)U{P}{ o}
= min{bgypap(er)s be} = Oer (b—er). 0

Implementation. To update the payments, we use a top tree, a data structure
introduced by Alstrup et al. [1] to maintain information about paths in trees.
More precisely, a top tree represents an edge-weighted forest F with weight
function ¢(-). Some operations defined for top trees are:

— link((u,v), ), where u and v are in different trees. It links these trees by
adding the edge (u,v) of weight c(u,v) =z to F.

— cut(e). It removes the edge e from F.

— update(e, x), where e belongs to F. It sets the weight of e to .

— max(u,v), where u and v are connected in F. It returns the edge with max-
imum weight among the edges on the path between u and v in F.

3 If there are more than one such cheapest edges, we pick one of them arbitrarily.
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In [1,5,15], it is shown how to implement a top tree (by using O(n) space) for
supporting each of the above operations in O(logn) time.

To our scopes, we use a top tree 7 as follows. 7 maintains the current MST
where the cost of each edge e € E(T) is 0.(b_.). Concerning Case 1, we only
need to update the threshold of some edges in T'(f). So, let f = (z,y) be the
edge which has decreased its cost. While c(e’) > b, where ¢’ =max(z,y), then
we (i) update the payment for ae to V%, and (ii) perform update(e’,t’). For
what concerns Case 2, let e = (z,y) be the edge in T not in 7”. First, we update
the MST by performing cut(e) and link(f,b.). Next, we update the payment
for a. (resp., ay) to 0 (resp., b.). Finally, while c(e’) > b, where ¢ =max(z,y),
then (i) we update the payment for a.s to b, and (ii) we perform update(e’, b,).

The above discussion yields the following:

Theorem 1. There exists a dynamic mechanism supporting a sequence of k
edge-cost decreasing operations in O(hlogn+k log* n) time, where h is the overall
number of payment changes. ad

4 Time-Sequenced Scenario: Problem Statement

Let G = (V,E) be a graph with a positive real weight w(e) associated with
each edge e € E. Henceforth, unless stated otherwise, by II we will denote a
communication network problem on (G, w), which asks for computing a subgraph
H € SoL(II) of G by minimizing an objective function ¢(H,w) of the form

o(H,w)= 3 wle)- une).

ecE(H)

where pg(e) depends only on the topology of H. Notice that this definition
embraces the quasi-totality of communication network problems, like the MST
problem, the shortest-paths tree problem, and so on.

Let k be a positive integer. We assume that the type of each agent a. is
te = (t1, ..., tF), while its bid is b, = (b2, ..., bF). Intuitively, ¢\ represents the
true cost incurred by a. for using its link e at time i. We will denote by ¢* € R™
the vector of agents’ types at time 4, and by ¢ the vector (t',...,t*).

Given a communication network problem IT, we want to design a truthful
mechanism for the optimization problem that we will denote by SEQ(IT). This
latter problem asks for computing a sequence H = (Hy,..., Hy), where H; €
SoL(Il), i =1,...,k, by minimizing the following objective

U(H,t) =P(H,t)+IT'(H),

where @(H,t) is a function measuring the quality of the solution H, and I'(H)
is a function measuring the overall set-up cost. For a given sequence H, we will
naturally assume that the valuation of a, w.r.t. H is:

ti ifee E(HZ),

k
ZV (H;,t!), where v!(H;,t%) :{
i=1

0 otherwise.
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Depending on the cost model to be adopted, the functions @(-) and I'(-) can
be defined accordingly. In this paper, we will consider the prominent additive
cost model, in which

k k

B(H,t) =Y d(Hit"), T(H)= ~(i,H),

i=1 i=1

where
Y1 € Rt ifi= 1;
fY(hH): ’yiER+ iin#Hifluizla"'ak;

0 otherwise.

For any 1 < i < j < k, by [¢,j] we will denote the interval {i,...,5} We
will write [¢, ) instead of [i,7 — 1]. Given two intervals [i, 7], [/, j'], we write
[i,7] < [¢/,5] if j < i'. An interval vector s = (I1,...,I}) is a vector of pairwise
disjoint intervals whose union is {1,...,k}, and such that I; < --- < I. Given
an interval I, let b’ be the vector defined as bl = Y., bi, for each edge e € E.
Moreover, we will denote by H; an optimum solution for II when the input is
(G, bh). Finally, given two sequences H = (Hy,..., H;),H' = (H],.. -, H), by
H © H' we denote the sequence (Hi, ..., H;, Hi,..., H}).

5 Time-Sequenced Mechanisms: Positive Results

In this section we first define the class of time-sequenced single-parameter (TSSP)
mechanisms, and we prove that any mechanism in this class is truthful for
SEQ(IT). Moreover, for the case in which each set-up cost is upper bounded by 71,
we show that there exists an on-line max{k, p}-approximate TSSP mechanism,
where p is the approximation ratio of a monotone algorithm for I7. Then, we
turn our attention to the special case in which I is utilitarian and polynomial-
time solvable, and we show that if the graph changes are presented off-line to the
system, then there exists a VCG-like truthful mechanism for solving optimally
SEQ(IT), which can be computed in polynomial time by means of a dynamic
programming technique.

5.1 On-Line Sequences with Bounded Set-Up Costs
From now on, by § we will denote the interval vector ([1,1],..., [k, k]).

Definition 1. Given a communication network problem II, and a monotone
algorithm A for IT, a TSSP mechanism M(s) = (g5(b), p(b)) with interval vector
s={(I,...,In) for SEQ(II) is defined as follows:

1. gs(+) returns a sequence H = Hy ® -+ - © Hp, in which

Vi=1,....h, H;=(Hj,....,H;) has size ||,

where ij is the solution returned by A with input (G,b%7);
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2. For each agent a,
h
pe(b) = pA(b"),
j=1
where p(b19) is the payment provided to a. by the one-parameter mechanism
(A, p™(-)) for the problem IT when the input is (G,bl7).
Notice that, by definition, M(3) is the only on-line TSSP mechanism.
Proposition 1. M(s) is a truthful mechanism for SEQ(IT).

Proof. The mechanism breaks the problem in h instances (G,b™),..., (G,bl")
which are independent each other. Then it uses the one-parameter mechanism
(A, pA(-)) for each of them in order to locally guarantee the truthfulness. O

The main result of this section, whose proof is omitted due to lack of space, is
the following:

Theorem 2. Given a p-approzimate monotone algorithm A for II, the mecha-
nism M(3) applied to SEQ(IT) with the assumption that each set-up cost is upper
bounded by 1, has a performance guarantee of max{k, p}. ad

5.2 Off-Line Utilitarian Problems

In this section we show how to design an exact off-line mechanism when I7 is
utilitarian. Before defining our mechanism, we show how to compute an optimal
sequence by using dynamic programming.

Let H* denote an optimal solution for SEQ(IT), and let H | be an optimal

(1,5
solution for SEQ(IT) when the input is restricted to the interval [1, ], i.e. we have
i time steps and the bid vector is (b!,. .., b"). In order to lighten the notation, we

will write ¥(H[y 57, 0) instead of ¥ (Hy 1, (bt,...,b%), where Hi1,4 is a solution
for SEQ(II) restricted to the interval [1,4]. Notice that M, ; = (H[} ;;), and
W (M, 43 0) = G(H[y 1y, b') + 1. Moreover, Hfy 1 = H*

The dynamic programming algorithm computes H, ["; L forevery 1 <i<j<k.
Next, starting from ¢ = 1 to k, it computes Hpy ;) = H1,p,) © <H[";ll]>7 with

h; = arg . min

1,0

{l‘p/(ba h7 Z) = W(H[l,h)u b) + (b(H[*h,z] P b[h’i]) + ’Vh} )

where H[; 1) is the empty sequence, and ¥(Hy 1), b) is assumed to be 0.
The following lemma, whose proof is omitted due to lack of space, holds:

Lemma 3. For anyi=1,...,k, the dynamic programming algorithm computes
a solution My ;) such that W(Hp ;,b0) = ¥( E‘l i],b). |

We are now ready to define our VCG-like mechanism. Let Mg be a mechanism
defined as follows:
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1. The algorithmic output specification selects an optimal sequence (w.r.t. the
bids b) HE;

2. Let G—e = (V,E\{e}), and let H},_, be an optimal solution (w.r.t. the bids
b) in G — e. Then, the payment function for a. is defined as

pe(b) = W(HE_ . b) — W (HE,b) + ve(Ha,be).
From the above discussion, it is easy to prove the following

Theorem 3. Let IT be utilitarian and solvable in polynomial time. Then, Mycq
is an ezxact off-line truthful mechanism for SEQ(II) which can be computed in
polynomial time. O

6 Time-Sequenced Mechanisms: Inapproximability
Results

In this section we consider a natural extension of TSSP mechanisms named adap-
tive TSSP mechanisms, and we prove a lower bound of k£ to the approximation
ratio that can be achieved by any truthful mechanism in this class.

Definition 2. Let § be a function mapping bid vectors to interval vectors. An
adaptive time-sequenced single-parameter (ATSSP) mechanism M for IT is the
mechanism which, for a given vector bid b, is defined exactly as M(4(b)).

Lemma 4. Let t be a type profile for II, and let A be an optimal algorithm for
II. Then, Vn e RY, 0i(n-t* ) =n-0(t",).

Proof. Observe that VH € SoL(IT)

G(H,n-t')= > m-tipule)=n Y tipule)=n-¢(H,t").

c€E(H) c€E(H) U

Theorem 4. For any mapping function 0, for any optimal algorithm A for II,
and for any ¢ < k, there exists no c-approrimate truthful ATSSP mechanism
using A for SEQ(II), even when set-up costs are uniform.

Proof. The proof is by contradiction. Let M = v, = --- = ;. Let Ms be a c-
approximate truthful ATSSP mechanism for SEQ(IT). For the sake of clarity, we
denote by H(w) an optimum solution for IT with input (G, w). Let t! = (¢L,t1),

with t1, = (0,...,0), and t? = (t2_,0) be two type vectors for IT such that the
following three conditions hold:

(i) 2tL < 6% t! >0, where 62 = 6.(t2,);
(i) 6(H (£, +0), (12, +00)) > (k* — 1)M;
(iii) ¢(H(t2,,x), (t%,,z)) does not depend on M, for any x < 62 not depending
on M.

Lemma 5. There always exist t. and t%, satisfying the above conditions.

—e
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Proof. Let H € SOL(II) be such that E(H') ¢ E(H),VH' € SOL(IT). Let e be
an edge of H. Now for each ¢’ € F(H)\ {e}, let t2, = 1 . Moreover, for each

wa (e)
e’ € E\ E(H), let t2, be defined as follows

2 (k? —1)M
to, = max N
meSoLar)  ma (€)

By construction, condition (ii) holds. For M large enough, it is easy to see that
62 is at least (k> — 1)M — |E(H)| > 0, from which (i) follows as well. Finally,
condition (iii) follows by observing that pz(e) does not depend on M. O

Let t be the type profile defined as follows:

. 1 if 7 is .
Vi=1,...,k t’:{t if ¢ 15 odd;

t?  otherwise.

Lemma 6. For M large enough, 6(t) # §.

Proof. The proof is by contradiction. Let H be the solution computed by the
mechanism corresponding to the interval vector 5. Notice that W(H,t) > kM,
since H(t!') # H(t?). Consider now the solution H’ corresponding to the in-
terval vector ([1,k]). It is easy to see that for t! small enough, W(H' t) =
M + ¢(H (t1H), tH) < M+ k¢(H (2, th), (t2,,tl)). It follows that the ap-

proximation ratio achieved by the mechanism is at least

w(H,1) kM
W(H t) — M+ ko(H(t2,,th), (2., t}))

—e’r e

which, from (iii), goes to k when M goes to +oco. This contradicts the fact that
M is c-approximate. O

Lemma 7. For M large enough, the utility of a. in the solution gs(t) com-
puted by the mechanism Mg is less than LSJ 62.

Proof. Let 6(t) = (I1,...,I) be the interval vector computed by 4, and let H
be the corresponding solution. For each j =1,..., h, let I; = [z}, y;] be the j-th
interval, and let n; be the number of occurrences of ¢? in (t% ..., t%). Notice
that t1i = (n;t2,, (|I;| — n;)tl). It is easy too see that (|I;| —n;) < n; + 1.
Moreover, notice that e belongs to H(tIJ') iff n; > 0. Indeed, whenever n; > 0,
(n; +1)t! < m; 62 holds from (i), and from Lemma 4 this implies that e belongs
to H (t!7). Finally, notice that whenever |I;| > 1, a. incurs a cost of at least t}.

Then, from Lemma 4, the payment provided to a. is 2?21 n; 02 = |5 62,
while concerning the cost incurred by a, it is at least ! > 0, since from Lemma 6
there must exist an index j* such that |I;-| > 1. |

Consider now the following new type profile  which is equal to ¢ except for !
that is set to +oo for every odd 1.
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Lemma 8. For M large enough, §(t) = 3.

Proof. For the sake of contradiction, assume that §(f) # 5. Then, there must
exist an index j for which the solution H computed by the mechanism does not
change at time j. Hence, since either #/ = 400 or £~ = 400, from (ii) it must
be W(H, ) > kM. Consider the solution H’ corresponding to the interval vector
§. Then, the approximation ratio achieved by the mechanism is at least

W(H,t) - k2 M
W(H,t) ~ EM +k¢(H(t?),12)

which, from (iii), goes to k when M goes to +oco. This contradicts the fact that
M is c-approximate. O

To conclude the proof, observe that when the type profile is ¢, a. has convenience
to bid b, defined as

, t? if 7 is even;
Vi=1,...,k, b, =< ° )
+00 otherwise.

Indeed, in this case, from Lemma 8, its utility becomes equal to VSJ 62, which

e’

is better than the utility it gets by bidding truthfully (see Lemma 7). O

Notice that, since in the uniform set-up cost case each set-up cost is upper
bounded by 71, and since M (§) belongs to the class ATSSP, then Theorem 4
implies that the upper bound in Theorem 2 is tight, when A is optimal (i.e.,

p=1).
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Abstract. This paper investigates a new auction model in which bidders
have both copy and budget constraints. The new model has extensive and
interesting applications in auctions of online ad-words, software licenses,
etc. We consider the following problem: Suppose all the participators are
rational, how to allocate the objects at what price so as to guarantee
auctioneer’s high revenue, and how high it is.

We introduce a new kind of mechanisms called win-win mechanisms
and present the notion of unconditional competitive auctions. A notably
interesting property of win-win mechanisms is that each bidder’s self-
interested strategy brings better utility not only to himself but also to
the auctioneer. Then we present win-win mechanisms for multi-unit auc-
tions with copy and budget constraints. We prove that these auctions are
unconditional competitive under the situation of both limited and unlim-
ited supply.

1 Introduction

In recent years, great progresses have been made in electronic commerce, es-
pecially in internet auctions, to which various theoretical and practical studies
have been conducted. Besides governments use auctions to sell rights and assets,
such as Federal Communication Commission, a lot of companies also use internet
auctions to conduct business. There even exist some companies whose revenue
depends almost on certain types of auctions. Over 98% of Google’s revenue and
50% of Yahoo!’s revenue are derived from sales via keywords advertising auc-
tions [7].
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In this paper, we study a quite general yet very practical type of auctions,
where both budget and copy constraints are present. In our model, a single seller
sells multiple copies of a single kind of digital goods. During the process, each
buyer reports one private unit value he is willing to pay for the item, one private
number of copies he demands and one private budget that he is able to pay.
We investigate the model from the perspective of the seller, and our aim is to
present some auctions, whose performance can be theoretically guaranteed, that
maximize the seller’s revenue, with the basic assumption that buyers are rational
and want to maximize their preferences.

Different from traditional models which shield complex factors by making
certain assumptions, there are some additional considerations that distinguish
our model in terms of real life applicability:

1. Our model is especially suitable for digital goods, which can produce unlim-
ited copies with marginal cost zero, such as license sales, mp3 copies, online
advertisements, etc.

2. We consider both copy and budget constraints. We argue that under most
realistic circumstances, the demand of a buyer is limited. Redundant alloca-
tion will bring not profit, but resource waste. For example, issue 1000 copies
of software license to a company with only 100 computers is no doubt an
undesirable allocation result.

Besides studying the new auction model, this paper also has the following
contributions:

— We introduce a new kind of mechanisms called win-win mechanisms. As
we know, in two-sided markets the famous VCG mechanisms maximize the
buyers’ utilities and contrarily minimize the sellers’ revenue. Interestingly, in
our win-win mechanisms, each buyer’s self-interested strategy brings better
utility not only to himself but also to the seller.

— The concept of competitive ratio is first introduced by [9]. However, [9]’s
competitive ratio is only available to mechanisms with dominant strategy. We
generalize the concept to unconditional competitive ratio, which is applicable
to any mechanisms with equilibria.

— For the model with both limited and unlimited supply goods, we present two
win-win mechanisms with unconditional competitive ratio.

For the auctions with constraints, all the previous papers only considered
budget constraint. [4,12,14] studied the model of one item to sell under the
Bayesian-Nash budget constraint. In the last two years, [2] and [1] began to
study the model of multiple units, multiple bidders with budget constraint. Our
framework is inspired by the work of [8,1]. Specifically, [8] studies the auctions
with unlimited supply of digital goods. Each buyer in that model wants at most
one copy without any constraint. [1] studies the auctions with limited supply. But
the buyers have budget constraint and their demands are unlimited. Since our
model allows both unlimited and limited supply of goods and each buyer’s bid
consists of three parameters, clearly our model is substantially more complicated
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and general than these previous models. There are many unique properties of
our model requiring delicate mechanism designs and proofs. Indeed, our auction
is robust against bidders’ any strategic behavior.

The paper is organized as follows. In Section 2, we formally give the defini-
tions of the concepts and the model. Section 3 describes a win-win mechanism
for unlimited supply model with copy constraint. In Section 4, we prove the equi-
libria of it. Section 5 proves the unconditional competitive ratio of the auction.
In Section 6, we generalize the model to limited supply with copy and budget
constraint. Furthermore, we present another win-win mechanism for it with un-
conditional competitive ratio. Finally we conclude with Section 7. Details of all
the proofs can be found in the full version [3].

2 Preliminaries

2.1 Win-Win Mechanisms and Unconditional Competitive Ratio

Before giving its definition, it is necessary for us to introduce some basic knowl-
edge of mechanism design first. We follow the assumption in economics that all
agents are rational, i.e, each of them chooses its strategy to maximize its own
utility selfishly.

A standard model for mechanism design is as follows. Assume there are n
agents, each agent i has its private value t; (termed its true type) which is only
known to itself. Furthermore, each agent i is given a set of strategies A; such
that agent ¢ can perform any strategy a; € A;. For any input vector (a1, -, an),
the mechanism M(O,{P1,---,Pn}) should provide an output function o =
O(ay,- - ,a,) and a payment function p; = P;(a1,- -, a,) to each agent. All the
output function and payment functions are open to all. In a specific mechanism,
if p; > 0, agent ¢ needs to pay p;, as often happens in auctions. If p; < 0, p; is
the money given to agent i. Without loss of generality, we will always assume
p; > 0 for any ¢ in the context of auctions in the paper.

For any output, each agent ¢’s preference is given by a valued function:
v;(t;,0), called its valuation. Then its (quasi linear) utility can be defined as
u;(t;,0) = vi(t;,0)—Pi(a1, -+ ,an). Accordingly, the auctioneer’s revenue should
be Y7 Pilar, - ,ap).

One of the most famous mechanisms is called Vickrey-Clarke-Groves (VCG)
mechanism by Vickrey [17], Clarke [6], and Groves [10]. Despite VCG mecha-
nism has the attractive virtue that it is incentive compatible, namely, each agent
maximizes its utility when it reports its true type, it also has several weak-
nesses, for instance, the revenue may be very low, even zero. Actually, for a
two-sided market in which a product with large, indivisible units is exchanged
for money, VCG mechanisms maximize the buyers’ payoff and contrarily min-
imize the sellers’ revenue [16,13], which results from the attractive dominant
strategy property.

In this paper, we develop a new kind of mechanisms called win-win mech-
anisms, in which each agent’s self-interested strategy brings better utility not
only to himself, but also to the auctioneer. The rigorous definition is as follows.
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Definition 2.1 (Win-Win Mechanisms). For any Nash equilibrium (af,
..,a’) in the mechanism, the auctioneer’s revenue must be

ZPi(aTv"' ak) > Zﬂ'(th--- )
i=1 i=1

So under any equilibrium state of a win-win mechanism, the auctioneer’s revenue
must be at least as high as that when all the agents tell the truth.

In accord with the notion of win-win mechanisms, we generalize the concept
of competitive ratio first appeared in Goldberg et al.’s paper [9] as follows.

Definition 2.2 (Unconditional Competitive Ratio). An auction A has
some unconditional competitive ratio 3, if for any set of rational bidders and
their private true value vector b,

F(b)
B

where b* is any Nash equilibrium in the auction, Revenue4 represents the (ex-
pect) revenue of auction A and F(b) denotes the optimal single price revenue
that the auctioneer could have obtained if the true types of the bidders were
known in advance.

Revenue 4(b*) >

2.2 Auctions with Copy Constraint: Model and Notation

In the model, the auctioneer sells an idiosyncratic commodity with unlimited
copies to n buyers, denoted by ¢ = 1,2,...,n. Each buyer ¢ has two kinds of
privately known information: u; € RY, ¢; € N. u; represents the unit value
buyer i is willing to pay for the commodity, ¢; represents the number of copies
1 demands.

Each buyer ¢ simultaneously submits his bid, denoted by (u;, ¢;) to the auc-
tioneer. When receiving all the submitted bids, the auctioneer decides how many
copies each buyer will get and how much he should pay. Actually, it is the one-
round sealed-bid auction.

We use F represent the optimal revenue the auctioneer could get if the true
types of the bidders were known in advance, under the consideration that the
auctioneer can only set an identical unit price. Formally,

Definition 2.3. Given bids b = ((u1,c¢1), ..., (tn, ¢n)) sorted in decreasing or-
der according to the unit value,
F(b) = ax ug Z ci (2.1)
== 1<i<k

denotes the maximum single price revenue the auctioneer can achieve, and such
corresponding price uy is denoted by pr).

Furthermore, we use F(2) (b) represent the optimal single price revenue that
there are at least 2 winners. l.e.,
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Definition 2.4 (Utility). Each buyer #’s utility for his allocation allocation;
and payment payment; is defined as:

U; = u; x min {¢;, allocation; } — payment; (2.2)

where u;, ¢; are bidder ¢’s true type and allocation; is the copies he gets corre-
sponding to his submitted bid.

In addition, for convenience and simplicity, we will use the following notations
in the entire paper.

Definition 2.5. Given bidders’ true type vector b,

B = {(ui,ci)|ui > pr)} (2.3)

denotes the set of winners whose unit values are not lower than pr,). And

a = maX{ZIU‘?ZPF(b)}{CZ} (2.4)

Zui 2PF(b) Ci

denotes the ratio of maximum demanded copies among winners to the number
of demanded copies of all the winners in the single price optimal auction.

3 Algorithm: Random Partition with Revenue Share
Auction

In the following, based on the bidders’ input vector, we present a win-win auc-
tion with unconditional competitive ratio called Random Partition with Revenue
Share Auction to obtain the allocation and the payment. It is inspired by the
Cost Sharing Mechanism in [8]. But due to the differences of our model and
input vector, some properties of the Cost Sharing Mechanism are unavailable.
We shall develop a new and technically involved analysis for it.

Definition 3.1. Given bids b = ((u1,¢1), .- -, (un,¢n)) and R, find the smallest
p € RT such that
R

p =
Zui >p Ci
such p is denoted by pr.
Obviously, such p can be found in O(n) time.

Lemma 3.2. Bidders will tell their true wunit values in RevenueSharer
Auction.
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Auction 1. RevenueSharer Auction

1: Calculate pg.
2: For any winner ¢ such that u; > pr, sell ¢; copies to bidder ¢ at unit price pg.
3: Other bidders lose.

The following auction is based on Auction 1.

Auction 2. Random Partition with Revenue Share Auction (RPRS)

1: Partition bids b uniformly at random into two bid sets S’ and S”.
2: Compute F(S') and F(S").
3: Run RevenueShares sy on §” and RevenueSharer s on §' respectively.

Theorem 3.3. Bidders will tell their true unit values in Random Partition with
Revenue Share Auction.

We have proved that bidders will tell their true unit values in RPRS Auction.
Then will they tell their true copies? Assume all bidders are rational, then they
will lie on copies as long as they can get more benefit. Suppose there are three
bidders in RPRS Auction and their true bids are (1,1),(1.1,1),(0.54,1). Now the
expect utility of the first bidder is 0.43. However, if he bids (1,2) instead of (1,1),
his expect utility will increase to 0.45. In the next section, we will further talk
about this issue.

4 Nash Equilibrium and Copy Bounds of RPRS Auction

Consider the counter example above which implies that in RPRS Auction a
bidder may have motivation to lie on the number of copies.

In that example, if the first bidder wants to obtain more profit, he has to
increase his input number of copies. Although this change results in waste of
copies, he may attain more profit as long as the new price is low enough.

We assume that bidders choose their input number of copies to maximize
their expect utility given the bids made by the other bidders. If there exists an
equilibrium, then in the equilibrium, each bidder has no reason to change his
bid, which motivates the following definition.

Definition 4.1. In RPRS Auction, a Nash equilibrium is a set of input param-
eters such that for any bidder ¢ and his strategy ¢} in the equilibrium, there does
not exist ¢, such that:

. . . . . / . /
u; min {¢;, allocation } —p* x allocation] < u; min {¢;, allocation; } —p’ x allocation;

where ¢; is bidder i’s true copy demand, p* is the price under the equilibrium
while p’ is the unit price when ¢ bids ¢,. allocation? is the copies that i gets under
the equilibrium and allocation] is the copies that i gets when he bids c}.
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Lemma 4.2. In RevenueSharer Auction, a bidder will never tell a smaller
number of copies than his true copy demand.

Theorem 4.3. In RPRS, a bidder will never tell a smaller number of copies
than the true copies he demands.

Suppose bidders are sorted in decreasing order according to the unit value. b_; =
((ur,ch)s - (wim1, €5_q), (i1, Ciyq), - - -y (un, c),)) denotes the set of all bidders
except i’s input vectors. b; = (u;, ¢;) is bidder ’s true type. In RevenueSharer
Auction, we use pr represent the price corresponding to the input vector
(b;,b_;). Now, suppose bidder i changes his copy demand to ¢, and we use
Pk represent the new price. In order to increase his utility, bidder ¢ may lie on
his copy demand. Then how large could bidder ¢ lie on his copies? The following
will answer this question by giving the bounds.

Lemma 4.4. In RevenueShareg Auction, if bidder i wants to benefit from in-
creasing his copy demand, his cheating must make at least one loser after him
become a winner.

Assume C = {c}, -+, ¢, } is the set of current copies of all bidders in the auction.
For any equilibrium in the equilibrium set, bidder i’s copy demand is denoted
by ¢;. From Lemma 4.4, if all bidders become winners, no one can benefit from
increasing copy demand, so we can get the upper bound of submitted copies for
RevenueShareg Auction: ¢f — ¢; < uR" — Z?:1 c}. Combined with lemma 4.2,
we have the following theorem:

Theorem 4.5. In RevenueShareg Auction, the copy bounds is as follows:
* R -
¢ < ¢ Sci+u” —Z;Cj
=

In RPRS, first we partition the bids into two bid sets. Assume the optimal
revenue for the two bid sets is F' and F” respectively, and the revenue for all
bids is F. Since F' < F and F” < F, then we have the theorem:

Theorem 4.6. In RPRS Auction, the copy bounds in Nash equilibrium is:
f’

ciSCZ‘Su
n

5 Revenue Bounds of RPRS Auction

In this section, we focus on the auctioneer’s revenue. Here we will prove that
RPRS Auction is a win-win auction with unconditional competitive ratio. We
use the optimal single price auction as the benchmark to compute the revenue
bounds of RPRS Auction.

Theorem 5.1. RPRS Auction is a win-win auction.



Unconditional Competitive Auctions with Copy and Budget Constraints 23
The following definition and lemmas are prepared for computing the competitive
ratio of RPRS Auction.

Definition 5.2. Given any set S = {ej,...,e,} where ¢; € R, partition S
uniformly at random into two sets S; and S such that S;NSe = @ and S;USy =

S. Let
min { > ey eH

1€S1 1€Sa

g(S)=E

which is the expectation of the minimum sum between subset S; and Ss.
Lemma 5.3. Vi,j, if S’ = (S\{ei,e;}) U{ei + e}, g(S") < g(95)

Lemma 5.4. Given any set S = {ei,...,e,} where ¢; € RT and |S| > 2,
9(8)/ Yjesej = (1 —a')/4, where o/ = max;{e;/ Y ;cq€5}-

Theorem 5.5. Random Partition with Revenue Share auction is 4/(1—a) com-
petitive against o defined in definition 2.5 if there are at least two bidders win.

6 Limited Supply with Copy and Budget Constraints

The previous model only considers copy constraint. Since some bidders may
have limited purchasing power, such as in ad-words auction, here we present
another unconditional competitive auction for the model with copy and budget
constraints. Obviously, when budget tends to infinite, the model is the same
as that with copy constraint only. What’s more, in this section we talk about
limited supply instead of unlimited supply. In fact, unlimited supply is a special
case of limited supply. In limited model, if the supply exceeds bidders’ total
demands, then it is equivalent to the unlimited supply. So here we are talking
about a more general model.

Definition 6.1. Given bids b = ((u1,¢1,b1), ..., (Un, Cn,by)), where u; repre-
sents the unit value buyer i is willing to pay for the commodity, ¢; represents
the number of copies i demands and b; represents i’s budget. If b is sorted in
decreasing order according to the unit value, then F,, represents the optimal
single price revenue subject to the constraint that there are at most m copies
sold. T.e.,

b;
Fm(b) = max - min min < ¢;, ;M 6.1
®) = mgx {pming 3 min{e | (6.1

Definition 6.2. Given bids b = ((u1,¢1,b1),- .., (Un,¢n,bn)), R, and limited
supply m, find the largest integer k € [1,m], such that

E 3 R/k =
u; >R/k

Let prm = ';.
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Auction 3. RevenueShareg , Auction

1: Calculate pr,m.

2: Set r = Zuisz,m min {ci, PR }

3: If r < m, for any winner ¢ such that u; > pr,m, sell min {ci, p:i } copies to 7 at

unit price pr m;
If » > m, sell m units from 7 units randomly to the winners at unit price prm

under the constraint that any winner ¢ should get at most min {ci, p:i } copies.
4: Other bidders lose.

Obviously, RevenueShareg , Auction sells no more than m units.

Lemma 6.3. Bidders will tell truth on wunit wvalue and budget in
RevenueShareg ,, Auction.

Based on Auction 3, we get the following auction.

Auction 4. Random Partition with Revenue Share(™ Auction (RPRS(™))
1: Partition bids b uniformly at random into two bid sets S’ and S”.

2: Compute F' = Fn (§') and F”’ = Fp (8").

3: Run RevenueShares: m on S"” and RevenueSharezn m on S’ respectively.

Similarly, we get the following two theorems:

Theorem 6.4. In RPRS™ Auction, bidders always tell their true types of unit
value and budget.

Theorem 6.5. RPRS™) Auction is a win-win auction.

In this general model, we can still get the competitive ratio 4/(1 — «), however,
the proof in the previous section can not apply to this model.

Theorem 6.6. RPRS(™ is 4/(1—a) competitive against o if there are at least
two bidders win.

7 Conclusion and Discussions

This paper investigates multi-unit auctions with copy and budget constraints.
We introduce a new kind of mechanisms called win-win mechanisms. Then we
design win-win mechanisms with the same wunconditional competitive ratio of
1fa for both unlimited and limited supply goods. For any auction with dom-
inate strategy, possibly there exists an alternate win-win auction with better
competitive ratio. So it is worth trying to improve their competitive ratios by

designing performance guaranteed win-win auctions.
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It is worthy of emphasis that our novel win-win mechanisms shed light on the
following scenario. Sometimes, in order to maximize the revenue, the optimal
auction has to be executed inefficiently. I.e., the optimal solution of underlying
allocation and payment will have to be found in exponential time. When it hap-
pens, we can relax the auction as long as bidders’ strategic behaviors must also
lead to larger total revenue to the auctioneer. In other words, the auction makes
use of the bidders’ computational power to increase the auctioneer’s revenue.
This idea also has emerged in the mechanism design in [15].

Coincidentally, a new kind of mechanisms called output truthful mechanisms
is raised these days in [5,11]. In output truthful mechanisms, what concerns us is
whether the output under the equilibria in the mechanisms is the same as the re-
sult under the truthful input, while our win-win mechanisms are concerned about
whether the revenue under the equilibria in the mechanism is higher than the
revenue under the truthful input. Actually the motivation of both mechanisms
is to improve otherwise performances by relaxing the constraint of dominant
strategy.
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Abstract. We study the design of truthful auction mechanisms for
maximizing the seller’s profit. We focus on the case when the auction
mechanism does not have any knowledge of bidders’ valuations, especially
of their upper bound. For the Single-Item auction, we obtain an
“asymptotically” optimal scheme: for any k¥ € ZT and ¢ > 0, we give
a randomized truthful auction that guarantees an expected profit of
(InOPTInInOP(;’}i?;In%) OPT)1+€)’ where OPT is the maximum social
utility of the auction. Moreover, we show that no truthful auction can
guarantee an expected profit of 2(, ,r IET ).
In addition, we extend our results and techniques to Multi-units

auction, Unit-Demand auction, and Combinatorial auction.

1 Introduction

Auction has become an active area of research in Computer Science both for
its commercial applications in the rapid expanding space of Internet Economy
and for its algorithmic and game-theoretical appeals. A typical auction problem
consists of one or more sellers who have several items to sell and a collection
of bidders who want to buy what they would like to have with as little price
as possible. An auction mechanism then determines who gets which items and
at what price. As the participants (sellers and bidders) in an auction have their
own self-incentive and private information, an auction problem can be viewed
as a game among its participants.

The concept of truthful or incentive compatible mechanism captures the notion
of reasonable auctions — a reasonable auction should encourage its bidders
to show their true valuations. Truthfulness is a quite strong game-theoretical
requirement, stating that for each bidder, bidding his/her true valuation is
among the optimal strategies, no matter how other bidders behave. In another
word, in a truthful auction, the decision and pricing scheme are such that there
is no reason for any bidder to lie.

* This work is done at Microsoft Research Asia.

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 27-36, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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1.1 Related Work and Motivations

Many auction problems have truthful mechanisms. An example is the famous
Vickrey-Clarke-Groves (VCG) mechanism that maximizes the social utility
[13,3,7]. However, in VCG, the maximization of the social utility might be
achieved at the expense of the seller’s profit — generally, the VCG scheme
provides no guarantee on the seller’s profit. A natural step is to design a truthful
auction mechanism that maximizes profits.

Assuming that the distribution of valuations are known or can be gathered by
some statistical means, VCG mechanism with a properly chosen reserved price
can obtain very tight bounds on the expected profits [12,11,10]. However, there
are reasons to consider profit-maximization auction without full knowledge of
the valuation distributions[5].

A possible scenario is that the range of bidders’ valuations is known. Given
an upper bound h on the valuations, truthful auction mechanisms have been

developed to achieve a profit of (2 (OP T), where OPT is the optimal social

log h
utility of the auction [8,9].

In absence of any valuation information, Goldberg, Hartline, Wright in-
troduced a notion of competitive auctions in [6]. They proposed to measure
the quality of the profit-maximization scheme using a worst-case competitive
analysis against F?), the optimal single-price auction that sells at least two
items. Since then, several truthful auction schemes with constant competitive
ratios have been developed [5,1,2].

Note that F(® is a relatively lower bentchmark compared to OPT. In some
cases, one can not bound F(?) with OPT. In this paper, we compare the profit
directly with OPT.

1.2 Our Results

For auctions with a single item, we present a randomized truthful profit-
maximization scheme and prove that it is “asymptotically” optimal. In particu-
lar, for Yk € Z*,e > 0, we give a randomized truthful auction that guarantees

an expected profit of £2(, o 01975-7-1(1;1(@ OPT)i+e ). Moreover, we show that
OPT )

no truthful auction can always achieve a profit of 2(, o011 Opr.1m® opr

Furthermore, we extend our technique for Single-Item auction to more
complex auction problems such as multi-units auction, AdWords auction (Unit-
Demand auction), and combinatorial auction. For multi-units and AdWords
auctions, both our upper and lower bounds can be generalized. All our schemes
also guarantee that the expected social utility are within a constant fraction of
the optimal social utility.

For the general combinatorial auction, we build a profit-oriented auction
scheme on the truthful approximation scheme of Dobzinski, Nisan, and Schapira

: OPT
[4]. We can achieve a profit of “Q(\/manPTlnanPTm(ln(k) OPT)1+€)’ where m

is the number of items. When the bidders’ utility functions are submodular, a

OPT .
profit of £2( (log m)? In OPT In In O PT---(In(®) OPT)1+€) can be obtained.
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2 Notations

We assume that there are n bidders, and a set M of distinct items, M =
{1,2,--- ,m}. In addition, the seller has ¢; copies (¢; may be 4o00) of item
j € M. A bundle of items can be specified as a vector (dy,ds, - ,d,,), where
0 <d; <¢j,Vj € M, and we denote the collection of all the bundles with D.
Each bidder ¢ has a private valuation function v;, which assigns a non-negative
value to each bundle of items.

Each bidder submits a bid b; = {b;(S),S € D}. An auction mechanism
then outputs an allocation (Si,S2,---,S5,), where S; € D, and a price
(p1,p2, - ,pn). A feasible output of the mechanism must satisfy the following
two conditions:

— Limited Supply: For each item j € M, there are at most c; copies in
(517 327 T 7571,)
— Individual Rationality: For each bidder i € [n], p; < b;(S;).

A deterministic mechanism is ¢ruthful if for each bidder, truth-telling is a
dominant strategy, which means that her utility is maximized when she bids
truthfully no matter how others bid. For randomized mechanisms, there are two
extensions of truthfulness, universally truthful and truthful in expectation. A
randomized mechanism is universally truthful if it is a distribution of truthful
deterministic mechanisms. Truthfulness in expectation means that the expected
utility of a bidder is maximized when bidding truthfully.

In this paper, we focus on several special cases.

1. Single-Item auction: M consists of a single item, possibly with multiple
copies. Fach bidder would like to buy at most one copy.

2. Unit-Demand auction: multiple items, each item with one copy. Each bidder
would like to buy at most one item and is considering a number of different
options. In another words, each bidder only bids for Single-Item bundle.

3. Combinatorial auction: multiple items, each item with one copy. The bidder
bids for subsets of M.

3 Single-Item Auction

In this section, we focus on the Single-Item auction. We first consider the case
when there is one copy of the item, and give a profit-optimal truthful mechanism.
We then extend this result to the case of multiple copies.

3.1 Single-Copy Auction

Without loss of generality, we assume the bids are by > by > -+ > 1. Let g(z) =
k

Inz + 1, and G (z) = [] ¢ (z), Recall that ¢ (z) = g(g" 1 (2)),Vi > 2.
i=1
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Algorithm: SingleCopyAuction
INPUT: k€ Z*,e> 0 and 6 > 0.

1. If there is only one bidder, we set by = 1.

2. With probability 1 — §, we use the second price auction, that is, the
highest bidder wins the item at a price of the second highest price.

3. With probability §, the seller chooses a reserved price r according to
the distribution with density:

€
Jre(z) = 14 T E [b2, +00)

250 (2) (9M(2)

Then if by > r, the highest bidder wins the iterm with price r.
Otherwise, the item remains unsold.

It is well known that the second price auction is truthful. Because the highest
bidder is the only potential recipient of the item and the reserved price r is
chosen independently of her bid by, the auction of step 3 is a distribution of
truthful mechanism. Thus, our acution scheme is universally truthful.

The algorithm above uses reserved price auction to guarantee the seller’s profit
while uses second price auction to enhance the social utility. The parameter §
provides a tradeoff between these two objectives.

Theorem 1 (Profit Guarantee). Let E(R) be the expected profit of the
auction and E(SU) be its expected social utility. Let OPT denote the mazimum
social utility. Then we have

E(R) = 2 ( ort )
46 (OPT) (¢ (OPT))

E(SU) > (1 - 8)OPT

Proof: For simplicity, we give a proof for k =1,e =1, and § = % The proof is
essentially the same for general k, e, and §.

In Single-Item auction, the optimal profit OPT is equal to the maximum bid
bi. So it is obvious that E(SU) > JOPT because with probability of 1/2, we
use the second price auction and get a social utility of OPT.

For the seller’s profit, we have:

b1
E(R) = b2+;/ xf(x)dx

bo
1 [ 1
by + / dx
T2, (ng +1)2

1
2
1
2
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11 b—b
by +
27T 2k 4 1)2
by

= b1 2

2(In ! +1)

OPT

= 2(InOPT +1)2

Y

O

We now prove that the bound in Theorem 1 is essentially tight. To show this,
we first give two technical lemmas.

Lemma 1. Let @ be the distribution of a bid with Pr(by = 27) = ,}\,,j =
0,1,2,---. Then no truthful ( even in expectation) mechanism can extract
revenue greater than 1 on ®.

Proof: The distribution we used here is a modified version of distribution used
in [12], and the proof is similar. O

Lemma 2. For a fizedk € Z7, Zj>0 §<k)1(2j) goes to infinity.

Proof: We show that for any 4, there exists constant C; and N; > 0, such that
for any x > N;, we have ¢ () < C; In® . This is shown by induction on i.
Fori=1,g(z)=lnz+1<2Ilnz,Vo >e.

¢ (z) =g V(nz+1)

< g(i_l)(2 Inx) forxz>e
< Ci_1 lni_1(2 Inx) for 2Inz > N;_;
< C;In9 () exists C;, and NV;

For a fixed k € ZT, let C = cica---c and J be the smallest integer such
that J € Z*, 27/ > maz{N; : 1 < i < k}. Then we have g((27) < C;In'V(27) <
C; InG—b j. So we have

1 J 1 1 1
g 2 q N . . _ ) = +4-00. O
j_g:og(k)@i) ;}g(k)(%) C;jln]---ln(’f oF

Theorem 2 (Impossibility Result). For any k € ZT, there is no truthful
(even in expectation) mechanism with an expected profit of Q(g<k?(gjz;T))'

Proof: Assume there is a truthful auction, with an (expected) profit of

n (g<k?(gjz;T)>' That is to say, 3¢ > 0,N > 0, s.t. E(R) > c§<k?(gj;,T)7

OPT > N. Let J be the smallest integer such that 27 > N. Considering the bid
distribution @, we have

when
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1 27
E(R)>c S )
; 2j+1 g(k)(QJ)

c 1
2 2 Z ~(k)(2j)

=79

By lemma 2, E(R) goes to infinity, which contradicts with lemma 1. O

3.2 Multi-copy Auction

In a multi-copy auction, there is one item with ¢ copies (¢ may be unbounded).
We give a similar mechanism as Single-Copy auction. Our analysis can be
extended to this case. Since there is no difference between the case ¢ > n
(¢ = 4+00) and the case ¢ = n, we can assume that ¢ < n, and by > by > -+ > b,.
We use the following auction scheme.

Algorithm: MultiCopyAuction
INPUT: k€ Z%,e> 0, and 6 > 0.

1. If c =n, we set b1 = 1.

2. With probability 1 — §, we use the VCG mechanism: sell ¢ items to
the ¢ highest bidder at the price of the (¢ + 1)-th highest bidder.

3. With probability § we sell the items to the highest ¢ bidders with a
reserved price r chosen according to the distribution with density:

€
fk,E(x) = 14er T € [bc+17 +OO)
23500, (99(,7)

Similarly to the Single-Copy auction, we can obtain the following lower and
upper bounds on the expected profit for multi-copy auctions.

Theorem 3. Let OPT denote the optimal social utility and by,q, be the highest
bid (By our assumption OPT = Z bj and byae = b1). Then we have:

Jj=1

OPT
E(R) =12 (g(kl)(bmaw) (g(k:)(bmaw))1+€>

E(SU) > (1 — §)OPT

In addition, no truthful auction can obtain an expected profit of 2 (g(k%:T ’ ))

4 Unit-Demand Auction

We now consider the auction of multiple items, as in the keywords auction. Assume
there are n bidders (advertisers), and m slots on the web page to place advertise-
ments. The advertiser bids for each slot on the web page, and the search engine must
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decide which m bidders win slots, as well as the order to place the advertisements
and the prices. We focus on the case when the search engine does not place two
identical advertisements on the same page, which is the so-called Unit-Demand
auction.

As each bidder 7 has a bid for each item j, we can express their valuations by
a matrix B = (b;(j)).

Algorithm: AdWordAuction

1. Choose a reserved price r according to the following distribution:
with a probability of 1 — 4, set » = 1; with a probability of §, pick r
according to the distribution with density

€

,x € |1,400

‘Tg(k*l) ($) (g(k)(x))1+e [ + )

2. Compute prices p and allocation S by running VCG on input B
with reserved prices r = (r,--- ,r). The reserved price VCG works
as follows: add m virtual bidders with bid r = (r,---,r) into the
auction, then run VCG to determine the allocation and price of each
item. If an item is sold to a virtual bidder, then it is in fact unsold
in the original auction.

Recall the VCG scheme for Unit-Demand auction computes a maximum
weighted matching betwen bidders and items and allocates the items accordingly.
The price of each item is set to be the bidding price of its recipient minus the
difference of the total weights of this matching and of the maximum weighted
matching without this recipient. Clearly, VCG runs in polynomial time in the
number of bidders and items. Therefore, the algorithm above is a polynomial-
time auction scheme.

Theorem 4. The Unit-Demand auction is truthful and has an expected profit
_ OPT _ Cqb (s

of B(R) = (w—l)(bnw)(g(k)(bmaw)l“ ) where bmas = mazi; bi(j)}. The
expected social utility E(SU) > (1 —§)OPT.

Proof: Again for simplicity, we prove the theorem for k = 1,e =1, and § = g
Let M be a maximum weighted matching between the n bidders and m items,
p1 > p2 > -+ - > P, be the prices of the items sold in M, and n, = argmaz;{p; >
x}. Using the similar technique in [8], we know that when the reserved price is
picked at x, there are n, items with prices higher than = sold in M, and at least
half of them can be sold by the reserved price auction. So we have:

3 2

3

.
> d
= 3™ Z/pm lnx—|—1) z)

E(R) = ‘m+ 2 /ﬂo e f(a)da
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1 1 "
> i
_3m+31np1+ Q;Z ~ i)
= 1m+1 ! (p1+p2+--+pm—m)
- 3 3 (lnpl + 1)2 pl p2 pm

S OPT
~ 3(Inbpmae + 1)2

With a probability of 1/3, we use the VCG with a reserved price of 1 and can
obtain the optimal social utility OPT. So E(SU) > ;OPT. O

5 Combinatorial Auction

We modify the algorithm in [4]. In step 3, they use a second-price auction for
M, the bundle of all items, with a reserved price py, however, we use a randomly
chosen reserved price. To be self-contained, we include the basic steps of this
algorithm.

Algorithm: CombinatorialAuction

— Phase I: Partitioning the Bidders
1. Assign each bidder to exactly one of the following three sets: SEC-
PRICE with probability 1—¢, FIXED with probability 5, and STAT
with probability 5.

— Phase II: Gathering Statistics
2. Calculate the value of the optimal fractional solution in the
combinatorial auction with all m items, but only with the bidders in
STAT. Denote this value by OPT & 7.

— Phase III: A Second-Price Auction with reserved price.
3. Randomly pick a reserved price r according to the following density

: . — €1

function: f ., () = ea-0(2)(509(2) 14, & € [po,+00) where
po = OPTép sr-

— Phase IV: A Fixed-Price Auction
4. Let R = M,p = eOPTép 4/ (8m).
5. For each bidder ¢ € FIXED, in some arbitrary order:
(a)Let S; be the demand of bidder i given the following prices: p for
each item in R, and +oo for each item in M — R.
(b) Allocate S; to bidder ¢, and set his price to be p|S;|.
(c) Let R=R\ S;.

Theorem 5. In the general combinatorial auction,

E(R) = 2 ( ort )
Vm(g+=Y(OPT)) (¢ (OPT))
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When the bidders’ utility functions are submodular, we have

B(R) = 0 OPT .
(log m)2(3--1(OPT)) (¢ (OPT))

Proof: The combinatorial auction can be formulated as a linear program. let
OPT* be the optimal fractional solution. As mentioned in [4], there are two
cases:

— There is a bidder 4 such that v;(M) > ©UT" This is similar to the Single-

vm
Copy auction. Let Umaz = MAT;V; (M)7 then OPT 2 Umaz = O\I/Dg: 2 O\/I:;LT

( ) (g(k_l)(vmaz) (g(k)(,umam)) +el>

_ 0 OPT
Vm(gk-D(0OPT)) (¢ (OPT))

— For each bidder 4, v;(M) > 0\1/33;*. As shown in [4], E(R) is Q(O\I/Dg:) Thus

: OPT
the expected profit is {2 (\/m(g<k—1)(OPT))(g(k)(OPT))”“ )
The proof is similar for the case when the bidders’ utility functions are
submodular. (]

6 Discussions and Future Work

In the scenario that an upper bound h of the valuations is given, we can give
a mechanism which improves the profit guarantee in [8,9] by a constant factor
log e. The algorithm is a VCG scheme with a reserved price, which is randomly
picked according to the density function f(z) = !,z € [1,h]. This scheme
guarantees an expected profit of (l)f g , which is proved to be optimal in [12].

All the randomized VCG scheme with reserved price mentioned in our
algorithms can be translated into a Randomized-Fixed-Price Auction. The
fixed price is picked from the same distribution as that of the reserved price. Then
we sell items with the fixed price to the bidders in a random order. All the profit
guarantees and the proofs above still apply. Using this Randomized-Fixed-Price
scheme, we can extend our results to the online auctions|[1].

The Unit-Demand auction is in fact a matching problem between bidders
and items. The maximum social utility are achieved by the maximum weighted
matching. A natural generalization of Unit-Demand auction is the following
multi-pattern auction: Given t; groups of items, the bidders have their
valuations for all items. The auction mechanism then chooses one of the groups
and allocates its items to the bidders.

From the view of matching, the valuations define ¢ sets of matching problems
between the bidders and items. The multi-pattern auction could be useful in
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Internet advertising. For example, the search engine can offer several kinds
of patterns for sponsored advertising, each with several slots to place the
advertisements. Fach advertiser (bidder) could submit a bid for each slot in
every pattern.

Assuming that there are t; groups and each group has t5 items, we can extend
our Unit-Demand auction scheme to obtain the following result.

Theorem 6. For any k € Z,e > 0, there is a truthful auction scheme with an
expected profit of

1 OPT
ER)=10 (t G (biaz) (g(;g)(bmaw))ure)

where byar = max; j{b;(j)},t = min{t, t2}.

Open Problem: Can we improve the factor of 1 in the bound?
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Abstract. In this work we study mechanisms with wverification, as
introduced by Nisan and Ronen [STOC 1999], to solve problems involv-
ing selfish agents. We provide a technique for designing truthful mecha-
nisms with verification that optimally solve the underlying optimization
problem. Problems (optimally) solved with our technique belong to a
rich class that includes, as special cases, utilitarian problems and many
others considered in literature for so called one-parameter agents (e.g.,
the make-span). Our technique extends the one recently presented by
Auletta et al [ICALP 2006] as it works for any finite multi-dimensional
valuation domain. As special case we obtain an alternative technique
to optimally solve (though not in polynomial-time) Scheduling Unre-
lated Machines studied (and solved) by Nisan and Ronen. Interestingly
enough, our technique also solves the case of compound agents (i.e.,
agents declaring more than a value). As an application we provide the
first optimal truthful mechanism with verification for Scheduling Un-
related Machines in which every selfish agent controls more than one
(unrelated) machine. We also provide methods leading to approximate
solutions obtained with polynomial-time truthful mechanisms with veri-
fication. With such methods we obtain polynomial-time truthful mecha-
nisms with verification for smooth problems involving compound agents
composed by one-parameter valuations. Finally, we investigate the con-
struction of mechanisms (with verification) for infinite domains. We show
that existing techniques to obtain truthful mechanisms (for the case in
which verification is not allowed), dealing with infinite domains, could
completely annul advantages that verification implies.

1 Introduction

Many computer scientists look at the world from a new perspective: they
study problems assuming there are selfish entities working for their own inter-
ests rather than for community interests. This implies that one has to design
new algorithms that have to deal, not just with the combinatorial structure of
the problem, but also, and perhaps mainly, with private interests conflicting

* Research partially supported by the European Project FP6-15964, Algorithmic
Principles for Building Efficient Overlay Computers (AEOLUS).

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 37-49, 2006.
© Springer-Verlag Berlin Heidelberg 2006



38 C. Ventre

with the aim of optimizing. The new perspective is motivated by many real-
life situations. Consider, for example, computations over the Internet. They
often involve self-interested parties (selfish agents) which may manipulate the
system by misreporting a fundamental piece of information they hold (their
own type or valuation). The system runs some algorithm which, because of the
misreported information, is no longer guaranteed to return a “globally opti-
mal” solution (optimality is naturally expressed as a function of agents’ types)
[19]. Since agents can manipulate the algorithm by misreporting their types,
one augments algorithms with carefully designed payment functions which
make disadvantageous for an agent to do so. A mechanism consists of an al-
gorithm (also termed social choice function) and payment functions which as-
sociate a payment to every agent. Payments should guarantee that it is in the
agent’s interest to report her type correctly. A social choice function is im-
plementable if the wtility that an agent derives from the chosen outcome and
from the payment she receives is maximum when this agent reports her type
correctly (see Sect. 1 for a formal definition of these concepts). When a social
choice function A is implementable we refer to the pair (A, P) to as truthful
mechanism. The only known general technique for designing truthful mecha-
nisms is the classical Vickrey-Clarke-Groves (VCG) paradigm [25,12,9]. These
mechanisms suffer from two main limitations: (i) they can be used only for
a limited family of optimization functions (see e.g. [19]) and (ii) they require
the algorithm to compute exact solutions which, in many cases, is unfeasi-
ble if the mechanism has to run in polynomial time (see e.g. [20]). In their
seminal work, Nisan and Ronen [19] introduce a mechanism design approach
to computer science problems having mnon-utilitarian optimization functions,
and show that even exponential-time mechanisms cannot achieve optimal solu-
tions (in contrast with the unselfish counterpart where a (1+¢)-approximation
can be obtained in polynomial-time). An alternative to VCG mechanisms is
to restrict the domain of the agents (i.e., possible values they can report).
For example the so-called one-parameter agents have been studied in [18,2].
Unfortunately, these domains are rather limited: for instance, although they
can model scheduling problems on related machines [2], they cannot model
the unrelated case in [19], nor the case of agents owning more than one ma-
chine. A quite innovative mechanism design approach has been introduced
by Nisan and Ronen [19] in order to overcome the above mentioned difficul-
ties for their scheduling problem: the mechanism can observe the job release
time and provides payments after the solution has been implemented. These
mechanisms are called mechanisms with verification. More “classical” mecha-
nisms without verification award the payment associated to an agent uncondi-
tionally (i.e., without performing any kind of verification and solely based on
the agents reported types). There are several reasons for being interested in
mechanisms with verification. First of all, there are specific optimization prob-
lems for which verification allows to overcome certain impossibility results for
mechanisms without verification [19,4,5] (which holds also for one-parameter
agents). Moreover, mechanisms with verification are very natural and many
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real-life applications require and/or already implement this kind of approach:
reputation is used by the e-Bay system to measure credibility of sellers; ser-
vice providers offer connectivity to the Internet with the guarantee of a min-
imal rate. Finally, verification helps in designing truthful mechanisms.

Our contribution. In this work we prove the first general result on mechanisms
with verification and show that, for any finite domain, there is a mechanism
that optimizes any minimization (resp. maximization) function monotone non-
increasing (resp. non-decreasing) in the agents’ valuations. This result applies to
any finite domain and extend to a ”multidimensional scenario” called compound
agents (see Def. 6). We indeed provide a social choice function (i.e., an opti-
mization algorithm) which is implementable with verification on finite domains
and that maximizes any optimization function p(-) which is monotone in the
agents valuations (i.e., pu(v1(X),...,v,(X)) is non-decreasing in each agent val-
uation v;(X)). With our “always implementable” social choice function we are
able to construct truthful mechanisms (with verification) optimizing the under-
lying optimization function (Cor. 1). Observe that VCG mechanisms [25,9,12]
can only deal with particular functions of this form called affine mazimizers (ba-
sically, the case p(v1(X),...,vm(X)) = >, Bivi(X), with constants 3; defined
by the mechanisms). The @Q||Cax scheduling problem is an example of an opti-
mization problem involving a monotone non-increasing function (thus our result
applies t0 @Q||Cax) that is not an affine maximizer. Our result gives an alter-
native proof of the existence of an exact truthful mechanism with verification
for unrelated machines [19]. Interestingly enough, our results extend to the case
of compound agents (see Sec. 3). To the best of our knowledge, these are the
first results/techniques on mechanisms with verification for such “multidimen-
sional” scenario (it should be noticed that already the “one-dimensional” case
is a generalization of both one-parameter [2] and comparable types [5]). Such
results give us powerful tool to solve very general problems. Indeed, we present
the first truthful exact mechanism with verification for scheduling unrelated
machines when agents control more than one machine (thus generalizing the
“one machine per agent” scenario/results in [19]). These exact mechanisms (and
in general those obtained with our technique above) could not run in polyno-
mial time. We thus move our attention towards approximation polynomial-time
mechanisms, and investigate the implementation of classical approximation al-
gorithms. In particular we consider compound agents in which each “dimension”
is a one-parameter valuation. In this setting, we show that any approximation
algorithm for a smooth problem (Def. 8) can be transformed into a truthful
mechanism (with verification) for the problem. The resulting mechanism (essen-
tially) preserves the approximation ratio of the algorithm. In order to guarantee
a polynomial running time, we require a constant number of compound agents
with constant dimensions (Th. 6). The most relevant application is a polynomial-
time ¢(1 4 &)-approximation mechanism for scheduling related machines when
the agents control more than one machine (see Def. 9) (given a c-approximating
algorithm for the problem). To the best of our knowledge, no solution was known
for this natural extension of the problem studied in [2]. The assumption of finite
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domains deserves some more discussions. From a practical point of view, many
real-life applications involve agents with types from a finite and discrete domain
(e.g., when costs or execution times are expressed as multiples of a given mon-
etary or time unit, and an upper bound is known). From a theoretical point of
view, it is interesting to investigate how to use verification to overcome impossi-
bility results proved for infinite domains (with no verification allowed). The only
case in which the assumption of finite domains has been removed is for problems
involving one-parameter agents (see [11,4]). In Sec. 4 we study truthful mech-
anisms with verification for infinite domains. We show that known techniques,
developed for mechanisms with no verification, seem to “cancel” the advantages
given by the verification. Besides one-parameter agents, no result (neither pos-
itive nor negative) was known on the design of mechanism with verification for
infinite domains. We stress that for finite domain several impossibility results
for mechanisms without verification are known [2,7], some of them applying to
our optimization functions in the “multi-dimensional” scenario. This shows that
verification does help for finite domains. Due to lack of space we omit some
proofs. These proofs can be found in the full version of the paper [24].

Related Works. Affine maximizers (see above) can be implemented for quasi-
linear utility functions (i.e., payment received plus agent’s monetary valuation)
using the celebrated VCG mechanism [25,12,9]. Roberts [21] showed that VCG
mechanisms are essentially the only truthful mechanisms if no hypothesis is
made on the domains of the agents. Mechanisms for one-parameter agents have
been characterized in [18,2]. For one-parameter agent domain there exists truth-
ful mechanisms for scheduling to minimize the makespan [2,3,1] and for some
types of combinatorial auctions [15]. Lavi, Mu’alem and Nisan showed that a
weak monotonicity condition (W-MON) characterizes order-based domains with
range constraints [14]. Similar results hold for linear inequality constraints on
the domain [13] and, more in general, for conver domains [23] (each class ex-
tending the prior one and the result for one-parameter agents). These results
concern mechanisms which do mot use verification and cannot be applied to our
case (indeed, one wishes to use mechanisms with verification to solve problems
which the other mechanisms cannot solve [19,4,5]). The study of social choice
functions implementable with verification was started by Nisan and Ronen [19],
who gave a truthful (1 + ¢)-approximate mechanism for scheduling on (a con-
stant number) of unrelated machines to minimize the make-span. Similar results
have been obtained by Auletta et al [4] for scheduling on any number of related
machines. These results are based on a characterization of mechanisms with
verification [4] for one-parameter agents. Mechanisms with verification for one-
parameter agents also appear in [11] where the main contribution is in providing
payment schemes, computable in constant time, working with infinite domains.
These schemes have the advantage of not conditioning execution time and ap-
proximation ratio of mechanisms using them. As already mentioned, a recent
work [5] characterizes mechanisms with verification for a rich class of finite do-
mains. Afterwards, they extend their result to the class of one-parameter agents
providing different mechanisms for several scheduling problems. The work (8]
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presents a general technique for constructing polynomial-time approximation
mechanisms for utilitarian problems (those affine maximizers in which one seeks
to maximize the social welfare, i.e., sum of the valuation of the agents). The
technique they use is similar to the one we use to obtain truthful mechanisms
for multidimensional agents. Similar methods were already used in [5]. This
approach derives from [17], where agents’ types are even simpler than the one-
parameter case (this kind of agents are called KSM bidders). Polynomial-time
mechanisms which approximate the social welfare for certain auctions are given
in [10]. Mechanisms in [8,10] do not use verification, but all problems are utili-
tarian and solutions rely on VCG mechanisms.

Preliminaries. We have a finite set O = {X1,..., Xk} of K possible alter-
native outcomes. We also have m selfish agents, each of them having a wvalu-
ation (or type) v; € D;, with D; being the domain of agent i. Domains are
multi-dimensional in the sense of [6]: The domain of v; is D; C RY with the
kth coordinate of type v; being v;(Xy), this type’s utility for outcome Xy, (i.e.,

v; = (v;(X1),...,v;(XK))).! The valuation v; is known to agent i only. A social
choice function A : D — O maps the agents’ valuations into a particular outcome
A(v1,...,Vm), where D = Dy X -+ - x Dy, is the domain of function A. A mecha-

nism M = (A, P) is a social choice function A augmented with a payment scheme
P =(Py,...,P,), where each P; is a function P; : D — R. The mechanism elic-
its from each agent its valuation; an agent ¢ can misreport her valuation to any
b; € D;. The mechanism, on input the reported valuations b = (b1, ..., by,), se-
lects outcome X as X = A(b) and assigns payment P;(b) to agent i. The utility of
agent i, when receiving a payment P;(b), with valuation v; is thus P;(b)+v;(X).
This kind of utilities are commonly denoted to as quasi-linear utilities. We let
b; € D; denote the valuation (or type) reported by agent i and by b_; the vec-
tor (b1,...,bi—1, bit1,...,by) of all valuations (or types) reported by the other
agents. We stress that both the outcome and the payments depend on the re-
ported valuations b = (b1,. .., by,). In particular, given b_;, the reported type b;
determines the outcome Ay,_,(b;) := A(b) and the payment P;(b). For a vector

x = (x1,...,Tm), we let x_; denote the vector (z1,...,2Zi—1, Tit1,-..,Tm) and
(y,x—;) the vector (x1,...,2i—1,Y, Tit1,...,&m); similarly, D_; := Dy X -+ X
D;—1 X Diyq1 X -+ X Dp,. A mechanism with verification can detect whether

b; # v; if and only if v;(Ap_,(b;)) < bi(Ab_,(bi)); in this case, agent ¢ will not
receive the associated payment. This verification model generalizes the concept
of verification introduced in [19].

Definition 1 ([19]). A social choice function A is implementable with verifi-
cation if there exists P = (Py,...,Pp,) such that, for all i, all b_; € D_; the
utility of agent i with type v; is mazimized by reporting b; = v;.

1 An alternative, but completely equivalent, way to define these multidimensional
valuations is the following: Each valuation v; is a function v; : O — R representing a
monetary valuation v;(X) that agent ¢ associates to outcome X € O. This definition
has been used, for example, in [5].
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In this case, the pair (A, P) is called a truthful mechanism with verification. A
different way to read Def. 1 is that there exists P = (P4, ..., Py, ) such that, for
all v;,b; € D; and b_; € D_;, the following inequality holds:

vi(Ab_; (vi)) + Pi(vi, b)) > vi(Ab_,(bi)) (1)
if v;(Ap_,(b;)) < b;(Ap_,(b;)), and the following inequality holds:
vi(Ap_, (v;)) + Pi(vi, b—;) > vi(Ab_, (b;)) + Pi(bi, b_;) (2)

if v;(Ab_, (b)) > b;(Ab_, (b;)). We are interested in social choice functions which
are implementable with verification and that optimize some objective function
w(+) which depends on the agent valuations v = (v, .. ., Uy, ). For maximization
(respectively, minimization) functions, we let OPT,(v) be maxy ¢ u(X,v) (re-
spectively, miny . (X, v)). An outcome X € O is an a-approximation of p

for v € D if max{o‘g%("gl), Oﬂﬁ“&;)} < a. A social choice function 4 is «a-
u ;

approzimate for p if, for every v € D, A(v) is an a-approximation for p and
v. We stress that, in this paper we consider social choice functions that are im-
plementable with verification and either optimize or a-approximate a function
1. The approximation only refers to how good the selected outcome is and not
to the utilities of the agents (which are always maximized by reporting the true
valuation). Recall that we assume domains to have finite cardinality.

Truthful Mechanisms with Verification. For fixed ¢ and b_;, Eq.s 1 and 2 give a
system of linear inequalities with unknowns P* := P;(x,b_;), for z € D;. This
system of inequalities is compactly encoded by the following graph.

Definition 2 (verification-graph). Let A be a social choice function. For ev-
ery i and b_; € D_;, the verification-graph V(Ayp_,) has a node for each type in
D;. The set of edges of V(Ayp_,) is defined as follows. For every a,b € D; add
an edge (a,b) whenever the solution Y = Ap_,(b) is such that a(Y) > b(Y'). The
weight of edge (a,b) (if any) is §(a,b) := a(X) — a(Y") where X = Ap_,(a).

The definition of the verification-graph is a modification of the graph introduced
n [16] (and after used by [5]) to study the case in which verification is not
allowed.

Theorem 1. A social choice function A is implementable with verification if
and only if, for all i and b_; € D_;, the graph V(Ap_,) does not have negative
weight cycles.

The theorem follows from the observation that the system of linear inequalities
involving the payment functions is the linear programming dual of the shortest
path problem on the verification-graph. Therefore, a simple application of Farkas
lemma shows that the system of linear inequalities has solution if and only if
the verification-graph has no negative weight cycle. The same argument has
been used for the case in which verification is not allowed albeit of a different
graph (see [22,16,13]). Payments computation deserves a last remark. When
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verification is not allowed the graph is complete and, if the system is feasible,
one solution is to set each P* equal to the length of the shortest path from
an arbitrarily chosen root vertex. The fact that the graph is complete implies
that all P* assume a finite value. When verification is allowed the graph is not
complete and, possibly, the graph is not completely connected.? Thus, setting
payments to shortest paths could lead to unbounded payments. However, it is
always possible to set unbounded payments to bounded payments satisfying
truthfulness conditions. Simple rules (on the existence of ingoing and outgoing
edges) ensure to bound payments preserving truthfulness. We remark that these
rules can be implemented in polynomial time.

2 MAX,, Social Choice Function

In this section we present our technique to obtain truthful mechanisms with
verification for any finite domain. We use next social choice function.

Definition 3 ([5]). Let u(-) be any mazimization function monotone non-de-
creasing in each of its arguments by (X),...,bn(X), with X € O and b; € D;.
For any X1,..., X, € O, let MAX,, be the social choice function that, on input
(b1,...,bm) € D, returns the solution X; of minimum index that mazimizes the
value p(b1(X;), ..., bm(X;)).

Notice that MAX,, social choice function uses a precedence relation among out-
comes in O. Indeed, when more solutions lead to the same value of the objective
function p, MAX,, always selects the “minimum” solution. Therefore, it holds
the following straightforward fact.

Fact 1. For any ¢ and any b_; € D_;, let a and b two valuations in D; and
denote X = MAX,(a,b_;) and Y = MAX,(b,b_;). If p(a(X),b_;(X)) =
wd(Y),b_;(Y)) then X =Y.

The MAX,, function can be also used to minimize a function y which is non-
increasing in each of its arguments: in fact, given such a pu, simply running
MAX_,, one obtains the minimum of u. As observed MAX,, social choice function
has been introduced in [5]. In that work it is shown that MAX,, function is
implementable with verification for comparable types.

Definition 4. Agent i’s domain D; is comparable if for any a,b € D either
a<borb<a (where a <b means that for all X € O, a(X) < b(X)).

Theorem 2 ([5]). Let u(-) be any mazimization function monotone non-de-
creasing in each of its arguments b1(X),...,bn(X), with X € O and b; € D;.
MAX,, is implementable with verification for comparable types.

2 This is not the case for comparable types. Indeed, for comparable types, the graph
is always connected.
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Theorem above summarizes some of the results in [5] in a concise form. Its proof
essentially exploits monotonicity of MAX,,, monotonicity of 4 and monotonicity
of comparable types. It turns out that, monotonicity of comparable types can
be overcome using properties of Vy_,(MAX,,), and thus MAX,, is always imple-
mentable with verification for any finite domain. Let us proceed more formally.
The main theorem of the section is the following:

Theorem 3. Let u(-) be any mazimization function monotone non-decreasing
in each of its arguments b1 (X), ..., bn(X), with X € O and b; € D;, then MAX,,
s implementable with verification.

Theorem above follows from the following observation: so that a cycle in
verification-graph exists then it has to involve valuations mapped by MAX,
in the same outcome (thus obtaining a cycle of weight 0).

Notice that MAX,, always maximizes a monotone non-decreasing objective
function p. In other words, a direct consequence of last theorem is the following.

Corollary 1. Let u(-) be any monotone non-decreasing function in each of its
arguments b1(X),...,bpn(X), with X € O and b; € D;. Then, there exists a
social choice function OPT,, which maximizes u(-) and is implementable with
verification.

If the set O of outcomes is very large, then social choice function MAX,, could
not be efficiently computable. Our next result can be used to derive efficiently-
computable social choice functions which approximate the objective function by
restricting to a suitable subset of the possible outcomes.

Definition 5 ([5]). A set O’ C O is a-approximation preserving for p if, for
every b € D, the set O' contains a solution X' which is an a-approzimation of
i for b.

Corollary 2. Let u(-) be any optimization function to mazimize. Assume p(-)
is monotone non-decreasing in its arguments b1(X), ..., by (X), with X € O and
b; € D;. For any a-approzimation preserving set O the social choice function
APX, = MAXXEO' {X} is an a-approzimation for p and is implementable
with verification. Moreover, social choice function APX,(b) can be computed in
time proportional to the time needed for computing values u(X,b), for X € O'.

Corollary above is implied by Theorem 3. Last results generalize results pre-
sented in [5]. Indeed, they show that the technique works for any valuation
domain and not just for comparable types. Moreover, these results lead to inter-
esting applications in studying (and solving) problems like Scheduling Unrelated
Machines. The valuations we are studying model well the case of scheduling un-
related machines (see [19]). Looking for mechanisms that are truthful but that
do not run in polynomial time, then Cor. 1 gives an alternative (to the one
proposed in [19]) technique to optimally solve the Q||Cpaz problem on unre-
lated machines. Unfortunately, these mechanisms do not run in polynomial-time
(as in [19]) since, in the case of unrelated machines, the number of solutions to
examine are exponentially many.
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3 Compound Agents

In this section we show that our technique presented in Sec. 2 solves the problem
of designing truthful mechanisms with verification for what we call compound
agents.

Definition 6 (Compound types). The type v = (v',v?,... ,v?) of a d-dimen-
sional compound agent has d components each of which is a single valuation. A
d-dimensional compound type set is simply the cross product of d type sets and
we will denote by D; = D} x ... x D¢ the type set of agent i. We call, an agent
with compound type set, compound agent.

A solution X € O consists of d components (i.e., X = (X!,..., X%)). The valua-
tion @ for a given solution X is a function of v*, v2, ... v? (e.g., 0(X) = v (X) +
...+ v%(X)). More specifically, given f : R? — R, 5(X) = f(v(X),...,v%(X)).
We assume that the mechanism is able to verify each of the d coordinates inde-
pendently. This implies that if an agent is caught lying over one of the d compo-
nents (for example, the agent declared b; as first component of its type instead of
v1 and the solution computed by the mechanism X is such that by (X) > v1(X))
then the agent receives no payment.> We stress that we do not require here that
valuation along one dimension is one-parameter, i.e., for all 1 < i < d, v’ is
any valuation in a finite domain defined in Sec. 1. Using a technique similar
to the one used in Sec. 2 we are able to prove a theorem similar to Th. 3 for
objective functions of the form pu(b}(X),...,b¢(X),...,bL (X),...,b% (X)) that
are monotone non-decreasing in any of its inputs.

Theorem 4. Let u(-) be any mazimization function monotone non-decreasing
in each of its arguments b} (X),...,b% (X), with X € O and b; € D;, then MAX,,
s implementable with verification.

Observe that Th. 4 applies also to the case in which each agent ¢ has (potentially)
different dimension d;. Indeed, slightly changing the definition of compound-
verification-graph (edges are added only between pairs of valuations of the same
dimension), the proof of theorem above still holds. Obviously, Cor.s 1 and 2
hold also for compound types. Last theorem gives a powerful method to solve
the following problem.

Definition 7 (Scheduling Unrelated Compound Machines). There are n
jobs that need to be allocated to M machines. Machines are owned by m < M
agents. Each agent owns d; machines, with Y .- d; = M. Agent i’s valuation v;
is the vector (vl,...,v™). Each v} is equal to the vector (v(X1),..., v(Xpm))

7
3 One could also define mechanisms with verification for compound agents as mech-
anisms able to verify only the whole valuation. That is, an agent would be able to
cheat along as many coordinates as he wants in a way that the d-dimensional re-
ported valuation is undetectable for the mechanism. In this case, the approach of
Sec. 2 works: indeed we can consider these agents as ones defined in Sec. 1. But,
with such definition, the concept of truthful mechanism would be quite strange.
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for some v € Df where v(Xy) is the opposite of the completion time of the work
assigned to jth machine controlled by agent i by the solution Xy. The goal is to
minimize the completion time of the last assignment (the makespan).

Theorem 5. There exists an exact truthful mechanism with verification for the
problem Scheduling Unrelated Compound Machines.

The theorem above bases on the technique of Th. 4. The resulting mechanism
does not run in polynomial-time as the solutions to work on are in exponential
number (namely M™).

Implementing Classical Algorithms for Compound One-Paramater Agents. Next
we will consider compound one-parameter agents, that is, compound agents in
which each coordinate is a one-parameter valuation (i.e., for agent i and solution
X, v;(X) = —t; - w;(X) where t; is i’s type and w;(X) is the work assigned to i
by solution X ). Observe that, for one-parameter agents any valuation (as defined
in Sec. 1) is in the form (—¢; - w;(X1), ..., —t; - w;(Xx)) given the type ¢;. Thus
any vector is just represented by the type t;.

We next introduce the class of smooth functions, for which there exists small
a-approximation preserving set of outcomes.

Definition 8. Fiz ¢ > 0 and v > 1. A function p is (v,&)-smooth if, for
any pair of valuations b and b such that, for any 1 < j < d, b{ > Bf > 'yb{
for i =1,2,....m, and for all possible outcomes X, it holds that w(X,b) <

For smooth functions p, on types we are studying, we can transform any
a-approximate polynomial-time algorithm A (which is not necessarily
implementable with verification) into a social choice function for a constant
number of d-dimensional agents which is computable in polynomial-time (with
d being constant), implementable with verification and «(1+ ¢)-approximates p.

Theorem 6. Let A be a polynomial-time «-approzimate algorithm for non-
decreasing (in each input) (v, €)-smooth objective function u(-) to mazimize. If
the problem involves compound one-parameter agents then, for any € > 0, there
exists an a(1+¢)-approximate social choice function A* implementable with ver-
ification. If the number of d-dimensional agents is constant and d is constant,
A* can be computed in polynomial time.

The proof of Th. 6 bases on the technique given by Corollary 2 on compound
types. Moreover, it applies also to the case in which each agent ¢ has (potentially)
different dimension d;. In this more general case, the social choice function A*
runs in polynomial time if m is constant and Y.~ | d; = O(1). Next, we provide a
small but nice application of technique presented in Th. 6. We solve the following
problem.

Definition 9 (Scheduling Related Compound Machines). There are n
jobs that need to be allocated to M machines. Machines are owned by m <
M agents. Each agent owns d; machines, with Y ;-  d; = M. Each agent i’s
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valuation v; is, for each machine j he controls, the opposite of the completion
time of the work assigned to machine j. That is, T; = (v}, ..., v%) and v!(-) =

—tjw;(-). The goal is to minimize the completion time of the last assignment.

We present a polynomial-time truthful mechanism with verification for the prob-
lem above when M is constant.

Theorem 7. Let A be a c-approximating algorithm for the make-span problem.
There exists a truthful c(14¢)-approzimating mechanism with verification for the
Scheduling Related Compound Machines using algorithm A. When the number
of the machines is constant then the mechanism runs in polynomial time.

4 Mechanisms with Verification for Infinite Domains

It should be clear that verification helps in defining payments. In fact, mecha-
nism is able to fine some kind of (detectable) lie. As stated in Sec. 1, payment is
a function going from D to R. It is well known that, for mechanisms without ver-
ification, defining payments on O x D_; is completely equivalent to our payment
functions definition. This consideration leads to the classical technique used,
designing mechanisms without verification, for dealing with infinite domains:
the use of the so-called allocation graph (which we generalize to the verifica-
tion setting to as allocation-verification-graph). In this section we show that this
technique, in general, cancels advantages of verification and, thus, cannot be
used, at least tout-court, in the verification setting.

Definition 10 (allocation-verification-graph). Let A be a social choice
function. For every i and b_; € D_;, the allocation-verification-graph G(Ayp_,)
has a node for each outcome in O@. The set of edges of G(Ap_,) is defined as fol-
lows. For every X, Y € O add an edge (X,Y) if there exists valuations a,b € D;
such that Ap_,(a) = X, Ap_,(b) =Y and a(Y) > b(Y) with X #Y € O.
The weight of edge (X,Y) (if any) is 6(X,Y) := inf,cry {a(X) —a(Y)}, where
'R}/( ={a € Rx|Ib € Ry s.t. a(Y) > b(Y)} with Rx = {a € D;|Ap_,(a) = X}.

Definition 11. An outcome X € O is fully reachable w.r.t. a social choice
function A, if for any i, any b_; and any X # Y € O there exist valuations
a,b € D; such that Ap_,(a) = X and Ap_,(b) =Y with b(X) > a(X).

Notice that, it is, in general, possible that a social choice function A admits fully
reachable outcomes. It is also possible that a social choice function has neutral
domains.

Definition 12. Agent i’s domain D; is neutral w.r.t. a social choice function A
if for all X,Y € O s.t. (X,Y) belongs to G(Ap_,) it holds that inf,cry {a(X) —
a(Y)} = infacr{a(X) —a(Y)}.

Next theorem states that verification’s advantages are canceled (on allocation-
verification-graph) for some particular social choice functions.
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Theorem 8. Let A be a social choice function. If any outcome in O is fully
reachable w.r.t. A and any agent domain is neutral w.r.t. A then, using the
allocation-verification-graph, A is implementable with verification if and only if
A is implementable without verification.

Acknowledgements. We wish to thank Paolo Penna for helpful discussions.
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Abstract. Unlike standard congestion games, weighted congestion
games and congestion games with player-specific delay functions do not
necessarily possess pure Nash equilibria. It is known, however, that there
exist pure equilibria for both of these variants in the case of singleton
congestion games, i.e., if the players’ strategy spaces contain only sets
of cardinality one. In this paper, we investigate how far such a property
on the players’ strategy spaces guaranteeing the existence of pure equi-
libria can be extended. We show that both weighted and player-specific
congestion games admit pure equilibria in the case of matroid congestion
games, i.e., if the strategy space of each player consists of the bases of
a matroid on the set of resources. We also show that the matroid prop-
erty is the maximal property that guarantees pure equilibria without
taking into account how the strategy spaces of different players are in-
terweaved. In the case of player-specific congestion games, our analysis
of matroid games also yields a polynomial time algorithm for computing
pure equilibria.

1 Introduction

Congestion games are a natural model for resource allocation in large networks
like the Internet. It is assumed that n players share a set R of m resources.
Players are interested in subsets of resources. For example, the resources may
correspond to the edges of a graph, and each player may want to allocate a
spanning tree of this graph. The delay (cost, negative payoff) of a resource
depends on the number of players that allocate the resource, and the delay of a
set of allocated resources corresponds to the sum of the delays of the resources in
the set. A well known potential function argument of Rosenthal [11] shows that
congestion games always possess Nash equilibrial, i.e., allocations of resources
from which no player wants to deviate unilaterally.

The existence of Nash equilibria gives a natural solution concept for congestion
games. Unfortunately, this property does not hold anymore if we slightly extend
the class of considered games towards congestion games with player-specific delay
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! In this paper, the term Nash equilibrium always refers to a pure equilibrium.
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functions, i.e., a variant of congestion games in which different players might
have different delay functions, and weighted congestion games, i.e., a variant
of congestion games in which the delay of a resource depends on a weighted
number of players. For both of these classes one can easily construct examples
of games that do not possess Nash equilibria (cf. Fotakis et al. [4] in the case of
weighted network congestion games). In this paper, we study which conditions
on the strategy spaces of individual players guarantee the existence of Nash
equilibria. We only consider games with non-decreasing delay functions since
otherwise one can construct examples of weighted and player-specific singleton
congestion games, i.e., games in which the players’ strategy spaces contain only
sets of cardinality one, that do not possess Nash equilibria.

It is known, however, that there exist pure equilibria for both of these vari-
ants in the case of singleton congestion games with non-decreasing delay func-
tions [10,2]. We extend these results and show that both player-specific and
weighted congestion games admit pure equilibria in the case of matroid conges-
tion games, i.e., if the strategy space of each player consists of the bases of a
matroid on the set of resources. We also show that the matroid property is the
maximal condition on the players’ strategy spaces that guarantees Nash equi-
libria without taking into account how the strategy spaces of different players
are interweaved. In the case of player-specific matroid congestion games, our
analysis also yields a polynomial time algorithm for computing pure equilibria.
Let us remark that the best response dynamics may cycle for player-specific sin-
gleton congestion games [10]. For weighted matroid congestion games we do not
have an efficient algorithm for computing a Nash equilibrium, but we show that
players playing “lazy best responses” converge to a Nash equilibrium.

Related Work. Milchtaich [10] considers player-specific singleton congestion
games and shows that every such game possesses at least one Nash equilibrium.
Additionally, he shows that players iteratively playing best responses in such
games do not necessarily reach a Nash equilibrium, that is, the best response
dynamics may cycle. However, he implicitly describes an algorithm for comput-
ing an equilibrium. Our work generalizes Milchtaich’s analysis from singleton
congestion games towards matroid congestion games. Gairing et al. [6] consider
player-specific singleton congestion games with linear delay functions without
offsets and show that the best response dynamics of these games do not cy-
cle anymore. Milchtaich [10] also addresses the existence of Nash equilibria in
congestion games which are both player-specific and weighted. In this case, a
Nash equilibrium does not necessarily exist in singleton congestion games. How-
ever, Georgiou et al. [7] and Garing et al. [6] conjecture that these games pos-
sess Nash equilibria in the case of linear player-specific delay functions without
offsets.

Even-Dar et al. [2] consider a load balancing scenario with weighted jobs.
They show that in this scenario at least one Nash equilibrium always exists and
that players iteratively playing best responses converge to such an equilibrium.
A similar result can also be found in [10] and [3]. Our proof that every weighted
matroid congestion game possesses at least one Nash equilibrium reworks the
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proof in [2]. Even-Dar et al. [2] also consider the convergence time in the case
of unrelated, related, and identical machines, and different types of job weights.
They show that players do not necessarily converge quickly in any of these sce-
narios. Fotakis et al. [4] consider weighted network congestion games in which
the strategy space of each player corresponds to the set of all paths between
possibly different sources and sinks in a network. First they show that a Nash
equilibrium does not necessarily exist. However, they are able to show that in
the case of [-layered networks with delays equal to the congestion every weighted
network congestion game possesses at least one Nash equilibrium. This shows
that if we consider more than the combinatorial structure of the strategy spaces
of the players, then one can identify larger classes of weighted congestion games
possessing Nash equilibria.

It is interesting to relate the results about the existence of Nash equilibria in
player-specific and weighted matroid congestion games to our recent work about
the convergence time of standard congestion games: In [1] we characterize the
class of congestion games that admit polynomial time convergence to a Nash
equilibrium. Motivated by the fact that in singleton congestion games players
converge quickly [9], we show that if the strategy space of each player consists
of the bases of a matroid on the set of resources, then players iteratively playing
best responses reach a Nash equilibrium quickly. Furthermore, we show that the
matroid property is a necessary and sufficient condition on the players’ strategy
spaces for guaranteeing polynomial time convergence to a Nash equilibrium if
one does not take into account the global structure of the game.

Formal Definition of Congestion Games. A congestion game I" is a tuple
(N, R, (Xi)ien, (dr)rer) where N = {1,...,n} denotes the set of players, R =
{1,...,m} the set of resources, X; C 2% the strategy space of player i, and
d, : N — N a delay function associated with resource r. We call a congestion
game symmetric if all players share the same set of strategies, otherwise we
call it asymmetric. We denote by S = (S1,...,S,) the state of the game where
player i plays strategy S; € X;. Furthermore, we denote by S @ S} the state
S =(81,...,8:-1,5},Sit1,...,5n), i.e., the state S except that player 7 plays
strategy S; instead of S;. For a state S, we define the congestion n,(S) on
resource r by n,.(S) = |{i | r € S;}|, that is, n,(S) is the number of players
sharing resource r in state S. Players act selfishly and like to play a strategy
S; € X; minimizing their individual delay. The delay §;(S) of player ¢ in state S
is given by 0;(5) = >, cg. dr(n,(5)). Given a state S, we call a strategy S} a best
response of player i to S if, for all S} € X}, §;,(S®S}) < 6;(S®S}). Furthermore,
we call a state S a Nash equilibrium if no player can decrease her delay by
changing her strategy, i.e., for all i € N and for all S} € X}, §,(S) < §;(S @ S)).
Rosenthal [11] shows that every congestion game possesses at least one Nash
equilibrium by considering the potential function ¢ : Xy x --- x X, — N with
98) = e iy di(i).

There are two well known extensions of congestion games, namely player-
specific congestion games and weighted congestion games. In a player-specific
congestion game every player i has its own delay function d’. : N — N for
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every resource r € R. Given a state S, the delay of player 7 is defined as §;(S) =
> ores, d’(n,(9)). In a weighted congestion game every player i € A" has a weight
w; € N. Given a state S, we define the congestion on resource r by n,(S) =
> ires, Wi, that is, n,.(S) is the weight of all players sharing resource r in state 5.

Matroids and Matroid Congestion Games. We now introduce matroid
congestion games. Before we give a formal definition of such games we shortly
introduce matroids. For a detailed discussion we refer the reader to [12].

Definition 1. A tuple M = (R,Z) is a matroid if R = {1,...,m} is a finite set
of resources and I is a nonempty family of subsets of R such that, if I € T and
JCI, then J €T, and, if I,J € T and |J| < |I|, then there exists an i € I\ J
with JU {i} € T.

Let I C R. If I € Z, then we call I an independent set, otherwise we call it
dependent. It is well known that all maximal independent sets of Z have the same
cardinality. The rank rk(M) of the matroid is the cardinality of the maximal
independent sets. A maximal independent set B is called a basis of M. In the
case of a weight function w : R — N, we call a matroid weighted, and seek to
find a basis of minimum weight, where the weight of an independent set I is
given by w(I) = ., w(r). It is well known that such a basis can be found by
a greedy algorithm. Now we are ready to define matroid congestion games.

Definition 2. We call a congestion game I' = (N, R, (X:)ien, (dr)rer) a ma-
troid congestion game if for every player i € N', M; :== (R, Z;) with T; = {I C
S| S e X} is a matroid and X; is the set of bases of M;. Additionally, we
denote by rk(I") = max;epn k(M) the rank of a matroid congestion game I.

The obvious application of matroid congestion games are network design prob-
lems in which players compete for the edges of a graph in order to build a
spanning tree [13]. There are quite a few more interesting applications as even
simple matroid structures like uniform matroids, that are rather uninteresting
from an optimization point of view, lead to rich combinatorial structures when
various players with possibly different strategy spaces are involved. Illustrative
examples based on uniform matroids are market sharing games with uniform
market costs [8] and scheduling games in which each player has to injectively
allocate a given set of tasks (services) to a given set of machines (servers).

Let us remark that, in the case of matroid congestion games, the assumption
that all delays are positive is not a restriction. Since all strategies have the same
size, one can easily shift all delays by the same value in order to obtain positive
delays without changing the better and best response dynamics.

2 Player-Specific Matroid Congestion Games

In this section, we consider player-specific matroid congestion games with non-
decreasing player-specific delay functions and prove that every such game pos-
sesses at least one Nash equilibrium. Moreover, the proof we present implicitly
describes an efficient algorithm to compute an equilibrium.
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Theorem 3. FEvery player-specific matroid congestion game I' with non-de-
creasing delay functions possesses at least one Nash equilibrium.

Proof. Recall that since the strategy space of player ¢ corresponds to the set
of bases of a matroid M;, all strategies of player ¢ have the same size rk(M;).
In the following, we represent a strategy of player i by rk(M,) tokens that the
player places on the resources she allocates. Suppose that we reduce the number
of tokens of some of the players, that is, player i has k; < rk(M;) tokens that
she places on the resources of an independent set of cardinality k;. Observe that
the independent sets of cardinality k; form the bases of a matroid M} whose
independent sets correspond to those independent sets of M; with cardinality
at most k;. Hence, a game in which some of the players have a reduced number
of tokens is also a matroid congestion game.

We prove the theorem by induction on the total number of tokens 7 =
> ien Th(M;) that the players are allowed to place, that is, we prove the ex-
istence of Nash equilibria for a sequence of games Iy, I7,... I, where Iy is
obtained from Iy by giving one more token to one of the players. I is the game
in which each player has only the empty strategy. Obviously, I, has only one
state and this state is a Nash equilibrium.

As induction hypothesis assume that player i has placed k; > 0 tokens, for
1 <4 < n, and this placement corresponds to a Nash equilibrium of the player-
specific matroid congestion game I, = (N, R, (Efi)ieN, (dL)ien rer) With £ =
> ien ki, in which the set of strategies Ezk coincides with the set of independent
sets of size k; of the matroid M;.

Now assume that some player iy has to place an additional token ty. We show
how to compute a Nash equilibrium for the game Iy, obtained from a Nash
equilibrium of Iy by changing iy’s strategy space to the set of independent sets
of size k;, + 1. Due to the greedy property of matroids, there exists a resource rg
such that placing the token ¢y on rg gives an independent set of size k;, + 1 with
minimum delay among all independent sets of the same size. Thus, assuming
that the tokens of the other players are fixed, an optimal strategy for player
10 is to place tg on ry and leave all other tokens unchanged. However, as the
congestion on 7y is increased by one, other players might want to move their
tokens from 7 in order to obtain a better independent set. We now use matroid
properties to show that a Nash equilibrium of I'y4; can be reached with only
n-m - rk(I") moves of tokens.

Lemma 4. Let M be a weighted matroid and B,,, be a basis of M with minimum
weight. If the weight of a single resource r,,, € B,,, is increased such that B, is
no longer of minimum weight, then, in order to obtain a minimum weight basis
again, it suffices to exchange r,, with a resource r* of minimum weight such that
B, U{r*}\ {r.,.} is a basis.

Proof. In order to prove the lemma we use the following property of a matroid
M = (R,I). Let I,J € T with |I| = |J| be independent sets. Consider the
bipartite graph G(IAJ) = (V,E) with V. = (I'\J)U(J\I) and E = {{i,} |
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ieI\JjeJ\I:TU{j}\{i} € Z}. It is well known that G(IAJ) contains a
perfect matching (cf. Lemma 39.12(a) from [12]).

Let B, be a minimum weight basis w.r.t. the increased weight of r,,;. Let
P be a perfect matching of the graph G(BoptABépt) and denote by e the edge
from P that contains .. For every edge {r,r'} € P\ {e}, it holds w(r) < w(r')
as, otherwise, if w(r) > w(r'), the basis Byp U {r'} \ {r} would have smaller
weight than Bgp.

Now denote by 7, the resource that is matched with 7oy, i.e., the resource
such that e = {ropt, 7.} € P. As w(r) < w(r') for every {r,r'} € P\ {e}, the
weight of B,y \ {7opt} is bounded from above by the weight of By, \ {r},;}-
By the definition of the matching P, Bopt U {71} \ {ropt} is a basis. By our
arguments above, the weight of this basis is bounded from above by the weight
of B, . Hence, this basis is optimal w.r.t. the increased weight of rop;. |

After placing token tq of player ig on resource rq, resource rg has one additional
token in comparison to the initial Nash equilibrium S of the game I7. Since
we assume non-decreasing delay functions, only the players with a token on rq
might now have an incentive to change their strategies. Let i; be one of these
players. It follows from Lemma 4 that ¢; has a best response in which she moves
a token t; from resource ry to another resource that we call 1. Now 7y is the
only resource with one additional token in comparison to S. Suppose we have
not yet reached a Nash equilibrium. Only those players with a token on ;1 might
have an incentive to change their strategies. Again applying Lemma 4, we can
identify a player iy that has a best response in which she moves a token to from
r1 to a resource 7y, which then is the only resource with one additional token.

The token migration process described above can be continued in the same
way until it reaches a Nash equilibrium of the game Iy11. The correctness of the
process is ensured by the following invariant.

Invariant 1. For every j > 0, after player i; moves token t; onto resource 7,

a) only players with a token on r; might violate the Nash equilibrium condition,

b) the Nash equilibrium condition of all players would be satisfied if one ignores
the additional token on r;, that is, if each player calculates the delay on r;
as if there would be one token less on this resource.

The invariant follows by induction on j: For player i; the invariant is satisfied as
this player plays a best response according to Lemma 4. Thus she satisfies the
Nash equilibrium condition even without virtually reducing the congestion on
rj. For all other players, the validity of the invariant for j follows directly from
the validity of the invariant for j — 1 as these players do not move their tokens.

Thus, in order to show the existence of a Nash equilibrium for I, it suffices
to show that the token migration process is finite. Consider an arbitrary token
t of any player i. For a resource r, let D;(r) denote the delay of ¢ on 7 if r has
one more token than in the initial state S. Observe, whenever ¢ is moved by the
migration process from a resource r to a resource 7’ then D;(r) > D;(r'"). Hence,
the token t can visit each resource at most once during the token migration
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process. As there are at most n - rk(I") tokens, the migration process terminates
after at most n-m - rk(I") steps in a Nash equilibrium of Ip11. O

The proof of Theorem 3 implicitly describes an efficient algorithm to compute a
Nash equilibrium with at most n? - m - rk*(I") moves of tokens.

Corollary 5. There exists a polynomial time algorithm to compute a Nash equi-
librium of a player-specific matroid congestion game with non-decreasing player-
specific delay functions.

3 Weighted Matroid Congestion Games

In this section we consider weighted matroid congestion games with non-decreas-
ing delay functions and show that every such game possesses at least one Nash
equilibrium. Moreover, we show that players find such an equilibrium if they
iteratively play “lazy best responses”. Formally, given a state S we call a best
response S; of player i lazy if it can be decomposed into a sequence of strategies
S;=89,8L,...,8F = 8 with [$771\ §!| = 1 and (S @ SIH) < (S @ 5Y)
for 0 < j < k. The existence of such a best response is guaranteed since given
a weighted matroid M = (R,Z), a basis B € T is an optimal basis of M if
and only if there exists no basis B* € 7 with |B\ B*| = 1 and w(B*) < w(B)
(cf. Lemma 39.12(b) from [12]). In particular, a best response which exchanges
the least number of resources compared to the current strategy S5; is a lazy best
response.

Theorem 6. FEvery weighted matroid congestion game I with non-decreasing
delay functions possesses at least one Nash equilibrium which is reached after a
finite number of lazy best responses.

Proof. Let S be a state of I'. With each resource r, we associate a pair z,.(S) =
(dr-(n-(S)),n-(S)) consisting of the delay and the congestion of r in state S. For
two resources r and 7’ and states S and S, let z,.(S) > z.(S") iff d,(n,-(S)) >
dyr (n (S")) or dr-(ny-(S)) = dpr(ny (S7)) and n,-(S) > ny (S7). Let 2,(S) > z(5”)
iff 2,.(S) > 2,+(5") and 2,.(S) # 2 (S"). Let Z(S) denote a vector containing the
pairs z.(S) of all resources r € R in non-increasing order, that is, z;(S) >
Zj+1(S), where z;(S) denotes the j-th component of z, for 1 < j < |R].

We denote by <, the lexicographic order among the vectors z(95), i.e.,
Z(51) <iex 2(S2) if there exists an index [ such that z;(S1) = Zk(S2), for all k < [,
and z;(S1) < z;(S2). Additionally, we define 2(S1) <o, 2(S2) if Z(51) <iex 2(S2)
and 5(51) 75 5(52).

Now given a state S, let player ¢ play a lazy best response 5. Since S} is a
lazy best response, there exists a sequence of strategies S; = S?,...,SF = S*
such that, for every 0 < j <k, |S?™"\ $/| =1 and

Yi(S) =1(S®SY) >w(SBSH) > ... >%u(S®SH) =n(S®S;) .

We claim that z(S @ Sf“) <iex Z2(S @ Sf), for every 0 < j < k. Let r; be the
unique resource in S} that is not contained in S/ 1 and let 75 be the resource
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that is contained in 7" but not in S7. Since the delay decreases strictly with
the exchange, we have

dr; (17, (S @ §7)) > dys (nr; (S © STT))
Additionally, since we assume non-decreasing delay functions,
oy (0, (5 ® 1)) 2 o (10, (5 © 871)) = dy 1, (S 9 57) — i)

Furthermore, n,, (S ® STy > N, (S D S771). Combining these inequalities implies
2, (S®SY) > 2, (S©SITY) and 2, (S® SY) > Zrs (S®S7*). Combined with the
observation that z., (S®S7) > Zp (S®S57), this yields 2(SHS?) >, 2(S®SIH),
that is, the lexicographic order decreases with every exchange and, hence, with
every lazy best response. This concludes the proof of the theorem. ad

In the full version of this paper we show that playing lazy best responses is a
necessary assumption in order to obtain convergence to a Nash equilibrium, that
is, we present a weighted matroid congestion game in which the best response
dynamic cycles if players are not restricted to lazy best responses. The delay
functions in this congestion game are non-decreasing but not strictly increasing.
We leave open the questions whether players playing arbitrary best responses
converge to a Nash equilibrium if each delay function is strictly increasing and
whether there is an efficient algorithm for computing a Nash equilibrium in
weighted matroid congestion games in general. To the best of our knowledge
the only positive result is known in the case of weighted singleton matroid con-
gestion games with identical resources, i.e., all resources have identical, non-
decreasing delay functions. In this case, Gairing et al. [5] show how to compute
a Nash equilibrium in polynomial time. If additionally the players are symmet-
ric, Even-Dar et al. [2] show that if one assigns the players in non-increasing
order of their weights to the resources, then the resulting assignment is a Nash
equilibrium.

Finally, we like to comment on the convergence time. Theorem 6 implies that
players iteratively playing lazy best responses reach a Nash equilibrium after at

most min ¢ (30, wi)™, (Tk”&,))n} strategy changes. The first term is an upper

bound on the maximal number of different vectors z(S) and the second one
bounds the number of different states of a matroid congestion game. Even-Dar
et al. [2] establish an exponential lower bound in the case of weighted singleton
congestion games with symmetric players and identical resources. However, they
use exponentially large weights to show this. In the full version of this paper
we present an infinite family of weighted singleton congestion games possessing
superpolynomially long best response sequences although every player has either
weight one or two and all delays are polynomially bounded in the number of
players and resources. This immediately implies that players do not necessarily
reach a Nash equilibrium in pseudopolynomial time.
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4 Non-matroid Strategy Spaces

In this section, we show that the matroid property is the maximal property on
the individual players’ strategy spaces that guarantees the existence of Nash
equilibria in player-specific and weighted congestion games with non-decreasing
(player-specific) delay functions. For this, let X be a set system over a set R
of resources. We call X' inclusion-free if for every X € X' no proper superset
Y D X belongs to Y. Moreover, we call X a non-matroid set system if the tuple
(R,{X C 5| S € X})is not a matroid. In [1] we show that every inclusion-free,
non-matroid set system possesses the (1,2)-exchange property. Here we need a
variant of this property with positive (instead of non-negative) delays.

Definition 7 ((1,2)-exchange property). Let X be an inclusion-free set sys-
tem over a set of resources R. We say that X satisfies the (1,2)-exchange prop-
erty if we can identify three distinct resources a,b,c € R with the property that
for any given k € N with k > |R|, we can choose a delay d(r) € {1,k + |R|}
for every r € R\ {a,b,c} such that for every choice of the delays of a, b,
and ¢ with |R| < d(a),d(b),d(c) < k, the following property is satisfied: If
d(a) + |R| < d(b) + d(c), then for every set S € X with minimum delay, a € S
and b,c ¢ S. If d(a) > d(b)+d(c)+|R|, then for every set S € X with minimum
delay, a ¢ S and b,c € S.

Lemma 8. Let X be an inclusion-free set system over a set of resources R.
Furthermore, let T = {X C S| S € X}, and assume that (R,T) is not a matroid,
i. €., that X is not the set of bases of some matroid. Then X possesses the (1,2)-
exchange property.

Proof. Since (R,Z) is not a matroid, there exist two sets X, Y € X and a resource
z € X \Y such that for every y € Y\ X, the set X \ {«} U {y} is not contained
in X (cf. Theorem 39.6 from [12]).

Let X and Y be such sets and let € X be such a resource. Consider all
subsets Y of the set X UY \ {z} with Y’ € X. Every such set Y’ can be written
as Y =X\ {ex=xz1,...,5:} U{y1,...,yr} with z; € X\ Y and y; € Y\ X
and [ + I’ > 2. This is true since | as well as I’ are both larger than 0 as X is
inclusion-free. Furthermore [ and I’ cannot both equal 1 as otherwise we obtain
a contradiction to the choice of X,Y, and x. Among all these sets Y”, let Y,
denote one set for which I’ is minimal. Observe that we can replace Y by Yiyin
without changing the aforementioned properties of X, Y, and z. Hence, in the
following, we assume that Y = Y., that is, we assume that Y\ X = Y/ \ X for
all of the aforementioned sets Y.

We claim that we can always identify resources a, b, ¢ € X UY such that either
a€X\YandbceY\XoraeY\X and b,c € X \Y with the property that
for every Z C X UY with Z € X, if a € Z, then b,c € Z. In order to see this,
we distinguish between the cases I’ =1 and I’ > 2:

1. Let Y\ X ={y1} and hence X \Y = {z = z1,...,2;} with [ > 2. Then we
set a = y1, b = x1, and ¢ = zo. Consider a set Z C X UY with Z € ¥ and
a ¢ Z. Then Z = X since X' is inclusion-free, and hence b,c € Z.
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2. Let Y\ X = {y1,...,yr} with I’ > 2. Then we set a = x, b = y;, and ¢ = y».
Consider a set Z C X UY with Z € Y and a ¢ Z. Since we assumed that
Y = Yiin, it must be b,c € Z as otherwise Z\ X #Y \ X.

Now we define delays for the resources in R \ {a, b, ¢} such that the properties
in Definition 7 are satisfied. Let k € N be chosen as in Definition 7, that is,
d(a),d(b),d(c) € {|R],...,k}. We set d(r) = k+|R| for every resource r ¢ XUY
and d(r) =1 for every resource r € (X UY) \ {a,b, c}. First of all, observe that
in the first case the delay of Y equals d(a) + |Y| — 1 < k4 |R| and that in the
second case the delay of X equals d(a) + |X| —1 < k+ |R|. Hence, a set Z € X
that contains a resource 7 ¢ X UY can never have minimum delay as its delay
is at least k + |R|. Thus, only sets Z € X with Z C X UY can have minimum
delay. Since for such sets, a ¢ Z implies b, c € Z, we know that every set with
minimum delay must contain a or it must contain b and c.

Consider the case d(a) + |R| < d(b) 4+ d(c) and assume for contradiction that
there exists an optimal set Z* with a ¢ Z*. Due to the choice of a, b, and ¢, the set
Z* must then contain b and ¢. Hence d(Z*) > d(b)+d(c). Furthermore, again due
to the choice of a, b, and ¢, there exists aset Z/ C XUY witha € Z' and b,c ¢ Z'.
The delay of Z' is d(Z') = d(a) +|Z'| — 1 < d(a) + |R| < d(b) + d(c) < d(Z*),
contradicting the assumption that Z* has minimum delay. Hence every optimal
set Z* must contain a. If Z* additionally contains b or ¢, then its delay is at least
d(a)+|R| > d(Z’). Hence, in the case d(a)+ |R| < d(b) + d(c) every optimal set
Z* contains a but it does not contain b and c.

Consider the case d(a) > d(b) + d(c) + |R| and assume for contradiction
that there exists an optimal set Z* with b ¢ Z* or ¢ ¢ Z*. Then Z* must
contain a and hence its delay is at least d(a). Due to the choice of a, b, and
¢, there exists a set Z/ C X UY with a ¢ Z' and b,c € Z’'. The delay of
Z'is d(Z') = d(b) + d(c) + 17| =2 < d(b) + d(c) + |R| < d(a) < d(Z%),
contradicting the assumption that Z* has minimum delay. Hence every optimal
set Z* must contain b and c. If Z* additionally contains a, then its delay is at
least d(b) +d(c) + |R| > d(Z'). Hence, in the case d(a) > d(b) + d(c) + |R| every
optimal set Z* contains b and ¢ but it does not contain a. a

Theorem 9. For every inclusion-free, non-matroid set system X over a set of
resources R there exists a weighted congestion game I' with two players whose
strategy spaces are isomorphic to X that does mot possess a Nash equilibrium.
The delay functions in I' are positive and non-decreasing.

Proof. Given an inclusion-free, non-matroid set system we describe how to con-
struct a weighted congestion game with the properties stated in the theorem. We
will first describe how the strategy spaces are defined and then how the delay
functions are chosen.

Let X and X5 be two set systems over sets of resources Ry and R, respec-
tively. In the following we assume that both sets are isomorphic to X and that X;
is the strategy space of player i, for ¢ = 1,2. Due to the (1, 2)-exchange property
we can, for every player i, identify three distinct resources a;,b;,¢; € R; with
the properties as in Definition 7. Since we have not made any assumption on
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the global structure of the resources, we can arbitrarily decide which resources
from Ry and Ry coincide. The resources R; \ {a;, b;,¢;} are exclusively used
by player i. Hence, we can assume that their delays are chosen such that the
(1,2)-exchange property is satisfied. Thus, to simplify matters we can assume
that
Y1 ={{a1},{b1,1}} and Yy = {{az}, {b2,c2}} .
N S N 7 N N~
S1 53 S3 53

In the following, we assume that a; = bs, by = as and ¢; = co. Thus we can
rewrite the strategy spaces as follows: X1 = {{z},{y, 2z} } and X5 = {{y}, {z, 2} }.

We set wy = 2 and wy = 1 and define the following non-decreasing delay
functions for the resources z, y and z, where m = |R|:

np=1n,=2n,=3
dy(ny) m 20-m 21-m
dy(ny) 5-m 12-m 15-m
d.(n;) 3-m 4-m 10-m

One can easily verify that |5;(S®S}) —6;(S®S?)| > m, for i = 1,2, regardless of
the choice of the other player. Hence, for every player, one of the inequalities in
Definition 7 is always satisfied. This game does not possess a Nash equilibrium
since player 1 prefers to play strategy S? if player 2 plays strategy Si, and S7 if
player 2 plays strategy S7. Additionally, player 2 prefers to play strategy S3 if
player 1 plays strategy S?, and S3 if player 1 plays strategy Si. ]

Theorem 10. For every inclusion-free, non-matroid set system X over a set of
resources R there exists a player-specific congestion game I' with two players
whose strategy spaces are isomorphic to X that does not possess a Nash equilib-
rium. The delay functions in I" are positive and non-decreasing.

Proof. The proof is similar to the proof of Theorem 9. In particular, the construc-
tion of the strategy spaces of the players is identical. The player-specific delay
functions are obtained from the delay functions in the proof of Theorem 9 as
follows: For the first player d!(n,) = d,(n, + 1), for every resource r € {x,y, 2}
and every congestion n, € {1,2}. For the second player d?(1) = d,(1) and
d%(2) = d,(3), for every resource r € {x,y, z}. 0

Summarizing, every inclusion-free non-matroid set system can be used to con-
struct a player-specific or weighted congestion game with positive delay functions
that does not posses a Nash equilibrium. Observe that this result also holds if
the system is not inclusion-free but the pruned set system, i.e., the set system
obtained after removing all supersets, is not the set of bases of a matroid because
supersets cannot occur in a Nash equilibrium in the case of positive delay func-
tions. Correspondingly, our results presented in Theorems 3 and 6 show that a
player-specific or weighted congestion game in which all players’ strategy spaces
correspond to the bases of a matroid after pruning the supersets possesses a
Nash equilibrium with respect to the pruned and, hence, also with respect to
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the original strategy spaces as supersets are weakly dominated by subsets in the
case of non-negative delay functions. Thus, the matroid property (applied to the
pruned strategy spaces) is necessary and sufficient to show the existence of Nash
equilibria.

Corollary 11. The matroid property is the maximal property on the pruned
strategy spaces of the individual players that guarantees the existence of Nash
equilibria in weighted and player-specific congestion games with non-negative,
non-decreasing delay functions.
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Abstract. Congestion games are a fundamental class of noncooperative
games possessing pure-strategy Nash equilibria. In the network version,
each player wants to route one unit of flow on a path from her origin to
her destination at minimum cost, and the cost of using an arc only de-
pends on the total number of players using that arc. A natural extension
is to allow for players sending different amounts of flow, which results
in so-called weighted congestion games. While examples have been ex-
hibited showing that pure-strategy Nash equilibria need not exist, we
prove that it actually is strongly NP-hard to determine whether a given
weighted network congestion game has a pure-strategy Nash equilibrium.
This is true regardless of whether flow is unsplittable (has to be routed
on a single path for each player) or not.

A related family of games are local-effect games, where the disutility
of a player taking a particular action depends on the number of players
taking the same action and on the number of players choosing related
actions. We show that the problem of deciding whether a bidirectional
local-effect game has a pure-strategy Nash equilibrium is NP-complete,
and that the problem of finding a pure-strategy Nash equilibrium in a
bidirectional local-effect game with linear local-effect functions (for which
the existence of a pure-strategy Nash equilibrium is guaranteed) is PLS-
complete. The latter proof uses a tight PLS-reduction, which implies the
existence of instances and initial states for which any sequence of selfish
improvement steps needs exponential time to reach a pure-strategy Nash
equilibrium.

1 Introduction

Game theory in general and the concept of Nash equilibrium in particular have
lately come under increased scrutiny by theoretical computer scientists. Com-
puting a mixed Nash equilibrium is a case in point. Goldberg and Papadim-
itriou (2006) showed only recently that finding a mixed Nash equilibrium in a
game of any constant number of players is reducible to solving a 4-player game.
Daskalakis, Goldberg, and Papadimitriou (2006) showed in turn that the latter
problem is PPAD-complete. Subsequently, Chen and Deng (2005) and Daskalakis
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and Papadimitriou (2005) proved that computing mixed Nash equilibria in games
with three players is PPAD-complete as well. Eventually, Chen and Deng (2006)
established the same result for the two-player case.

While Nash (1951) showed that mixed Nash equilibria do exist in any finite
noncooperative game, it is well known that pure-strategy Nash equilibria are in
general not guaranteed to exist. It is therefore natural to ask which games have
pure-strategy Nash equilibria and, if applicable, how difficult is it to find one. In
this article, we study these questions for certain classes of weighted congestion
and local-effect games.

Congestion games were introduced by Rosenthal (1973), who showed that
they are guaranteed to possess pure-strategy Nash equilibria. In a congestion
game, a player’s strategy consists of a subset of resources, and her disutility only
depends on the number of players choosing the same resources. An important
subclass of congestion games can be represented by means of networks. Each
player wants to route one unit of flow from her origin to her destination, at
minimal cost. The network arcs are the resources, and a player’s set of pure
strategies consists of the sets of arcs corresponding to paths connecting her
origin-destination pair. Fabrikant, Papadimitriou, and Talwar (2004) studied the
computational complexity of finding pure-strategy Nash equilibria in congestion
games. For symmetric network congestion games, where all players have the
same origin-destination pair, they presented a polynomial-time algorithm for
computing a pure-strategy Nash equilibrium. On the other hand, they proved
that this problem is PLS-complete for symmetric congestion games as well as
for asymmetric network congestion games. A simpler proof of the latter result
was given by Ackermann, Roglin, and Vocking (2006a), who also showed that
this result still holds if the cost functions are affine-linear.

In (unweighted) network congestion games, each player routes exactly one
unit of flow along a single path. In weighted congestion games, players can have
different amounts of flow. Depending on whether players are allowed to split their
flows or not, a player’s strategy consists of a set of paths with corresponding
integer flow values between her origin-destination pair, or of a single path.

Fotakis, Kontogiannis, and Spirakis (2005) studied weighted network conges-
tion games with unsplittable flows. They constructed simple examples of sym-
metric instances that do not possess a pure-strategy Nash equilibrium. On the
other hand, they proved that for the special case of affine cost functions, a pure-
strategy Nash equilibrium is always guaranteed to exist. Awerbuch, Azar, and
Epstein (2005) derived a tight bound of (v/5+3)/2 on the pure price of anarchy
for this special case. They also considered the case when the cost functions are
polynomials of fixed degree greater than 1. However, Goemans, Mirrokni, and
Vetta (2005) showed that a pure-strategy Nash equilibrium need not exist for in-
stances with cost functions that are polynomials of degree at most 2. Milchtaich
(1996) had earlier shown that weighted congestion games with player-specific
disutility functions on networks consisting of parallel arcs only do not always
have a pure-strategy Nash equilibrium.
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In this article, we show that the problem of deciding whether a weighted
network congestion game with simple, non-linear cost functions possesses a pure-
strategy Nash equilibrium is strongly NP-hard, regardless of whether we consider
splittable or unsplittable flows. In the unsplittable case, the problem remains NP-
hard even if all players have the same origin and the same destination. The same
is true for weighted congestion games with affine player-specific cost functions
in networks consisting of parallel arcs only.

Leyton-Brown and Tennenholtz (2003) introduced local-effect games as a tool
to model situations in which the use of one resource can affect the cost of other re-
sources. Local-effect games are in general not guaranteed to possess pure-strategy
Nash equilibria. However, Leyton-Brown and Tennenholtz showed that so-called
bidirectional local-effect games with linear local-effect functions belong to the
class of exact potential games, and therefore always have pure-strategy Nash
equilibria. The question of whether there exists a polynomial-time algorithm for
finding a pure-strategy Nash equilibrium for these games was left open.

We prove that computing a pure-strategy Nash equilibrium is PLS-complete.
Because the proof uses a tight PLS-reduction, our result implies the existence
of instances of these games that have exponentially long shortest improvement
paths. It also implicates that the problem of finding a pure-strategy Nash equi-
librium that is reachable from a given strategy state via selfish improvement
steps is PSPACE-hard. In addition, we show that, given an initial strategy pro-
file for a bidirectional local-effect game with linear local-effect functions and a
positive integer k (unarily encoded), it is NP-complete to decide whether there
is a sequence of at most k selfish steps that transforms the initial state into
a pure-strategy Nash equilibrium. We also prove that the problem of deciding
whether a bidirectional local-effect game with general, strictly increasing local-
effect functions has a pure-strategy Nash equilibrium is NP-complete.

For bidirectional local-effect games with linear local-effect functions (for which
a pure-strategy Nash equilibrium is guaranteed to exist), we also study the pure
price of stability w.r.t. the social objective that is given by the sum of the costs
of all players. In the case of linear cost functions, in which the worst-possible
ratio of the social cost of a pure-strategy Nash equilibrium to that of a social
optimum (i.e., the pure price of anarchy) is unbounded, we obtain a bound of 2
on the pure price of stability. Thus, there always exists a pure-strategy Nash
equilibrium whose cost is at most twice that of a socially optimal solution. For
the case of quadratic cost functions and linear local-effect functions we derive a
bound of 3 on the pure price of stability.

Before we present the details of our results on weighted congestion games and
local-effect games in Sections 2 and 3, respectively, let us end this introduction
by briefly discussing additional related work on the computational complexity of
pure-stratgey Nash equilibria. Gottlob, Greco, and Scarcello (2005) considered
restrictions of strategic games intended to capture certain aspects of bounded
rationality. Among other results, they proved that even in the setting where each
player’s payoff function depends on the actions of at most three other players
and where each player is allowed to play at most three actions, the problem
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of determining whether a strategic game has a pure-strategy Nash equilibrium
is NP-complete. This result was strengthened by Fischer, Holzer, and Katzen-
beisser (2006) who showed that this problem remains hard even if each player
has only two actions to choose from and her payoff depends on the actions of at
most two other players. Alvarez, Gabarré, and Serna (2005) studied how various
representations of a strategic game influence the computational complexity of
deciding the existence of a pure-strategy Nash equilibrium. They showed that
this problem is NP-complete when the number of players is large and the num-
ber of strategies for each player is constant, while the problem is > 5-complete
when the number of players is constant and the size of the sets of strategies
is exponential (with respect to the length of the strategies). Schoenebeck and
Vadhan (2006) analyzed the computational complexity of deciding whether a
pure-strategy Nash equilibrium exists in graph games and circuit games. Brandt,
Fischer, and Holzer (2006) studied the impact of various notions of symmetry in
strategic games on the computational complexity of finding pure-strategy Nash
equilibria. Expanding on a line of research started by Ieong et al. (2005), who
considered singleton congestion games, Ackermann, Roglin, and Vécking (2006a)
proved that the lengths of all best-response sequences are polynomially bounded
in the number of players and resources in congestion games where the strategy
space of each player consists of the bases of a matroid over the set of resources.
This especially implies that pure-strategy Nash equilibria for congestion games
with the matroid property can be computed in polynomial time, even in the
case of player-specific costs (Ackermann, Roglin, and Vocking 2006b). In the
latter paper, Ackermann et al. also showed the existence of pure-strategy Nash
equilibria in weighted congestion games with the same matroid property.

Due to space limitations, proofs are only sketched or omitted completely from
this extended abstract. Most details can be found in Dunkel (2005). A journal
version is forthcoming.

2 Weighted Congestion Games

An unweighted congestion game is a tuple (N, E, (S;)ien, (fe)ecr), where N =
{1,2,...,n} is the set of players, and E is a set of resources. For each player i €
N, her set S; of available strategies is a collection of subsets of the resources; that
is, S; C 2F. A cost function f. : N — R, is associated with each resource e € E.
Given a strategy profile s = (s1,82,...,8,) € S = S1 X Sy X -+ x S, the
cost (disutility) of player i is ¢;(s) = 3 .c,. fe(ne(s)), where ne(s) denotes the
number of players using resource e in s. In other words, in a congestion game
each player chooses a subset of resources that are available to her, and the cost
to a player is the sum of the costs of the resources used by her, where the cost
of a resource only depends on the total number of players using this resource.
A network congestion game is a congestion game where the arcs of an under-
lying directed network represent the resources. Each player i € N has an origin-
destination pair (a;, b;), where a; and b; are nodes of the network, and the set S;
of pure strategies available to player i is the set of directed (simple) paths from a;
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to b;. A symmetric network congestion game is also called a single-commodity
network congestion game because all players have the same origin-destination
pair.

In a weighted network congestion game (N, E, (w;)ien, (S:i)ien, (fe)ecE), €ach
player ¢ € N has a positive integer weight w;, which constitutes the amount of
flow that player ¢ wants to ship from a; to b;. In the case of unsplittable flows, the
cost of player ¢ adopting strategy s; in a strategy profile s = (s1,$2,...,8,) € S
is given by ¢i(s) = Y., fe(0e(s)), where 0c(s) = >,..c, wi denotes the total
flow on arc e in s. In integer-splittable network congestion games, a player with
weight greater than one can choose a subset of paths on which to route her flow
simultaneously; that is, player ¢’s strategy consists of the specification of the
a;-b;-paths used and the (integer) amounts of flow routed on them, which sum
up to w;.

In terms of the input size of a weighted network congestion game, we assume
that the cost functions are explicitly specified; that is, for each 0 <2 < )7,y w;
and each arc e, the value f.(z) is given in binary encoding.

While every unweighted congestion game possesses a pure-strategy Nash equi-
librium (Rosenthal 1973), this is not true for weighted congestion games; see,
e.g., Fig. 1 in Fotakis, Kontogiannis, and Spirakis (2005). We can actually turn
their instance into a gadget to derive the following result.

Theorem 1. The problem of deciding whether a weighted symmetric network
congestion game with unsplittable flows possesses a pure-strateqy Nash equilib-
rium 1s strongly NP-complete.

The proof is by a reduction from 3-PARTITION, and it is omitted from this
extended abstract. While the NP-hardness of the corresponding decision prob-
lem for weighted network congestion games with player-specific payoff functions
follows immediately, we can actually strengthen this result.

Theorem 2. The problem of deciding whether a weighted network congestion
game with parallel arcs and affine player-specific disutility functions possesses a
pure-strateqy Nash equilibrium is strongly NP-complete.

For network congestion games with integer-splittable flows, we obtain the fol-
lowing result.

Theorem 3. The problem of deciding whether a weighted network congestion
game with integer-splittable flows possesses a pure-strateqy Nash equilibrium is
strongly NP-hard. Hardness even holds if there is only one player with weight 2,
and all other players have unit weights.

Proof. Consider an instance of MONOTONE3SAT with set of variables X =
{z1,22,...,2,} and set of clauses C' = {¢1,co,...,cm}. We construct a game
that has one player p, for every variable x € X with weight w, = 1, ori-
gin z and destination Z. Moreover, each clause ¢ € C' gives rise to a player p.
with weight w. = 1, origin ¢, and destination ¢. There are three more play-
ers p1, p2, and p3 with weights wy = 1,we = 2, w3 = 1 and origin-destination
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pairs (s,t1), (s,t2), (s, t3), respectively. For every variable x € X there are two
disjoint paths P!, P? from x to Z in the network. Path P{ consists of 2 |{c €
Clz €c}|+1arcs and P} has 2|{c € C'| Z € c¢}| + 1 arcs with cost functions
as shown in Fig. 1. For each pair (c,¢), we construct two disjoint paths P!, PY
from ¢ to & Path P! consists of only two arcs. The paths P? will have seven
arcs each and are constructed for ¢ = ¢; in the order j = 1,2,...,m as follows.
For a positive clause ¢ = ¢; = (z;, V xj, V xj,) with j1 < ja < js, path P?
starts with the arc connecting ¢ to the first inner node v; on path ijl that
has only two incident arcs so far. The second arc is the unique arc (vi,vs) of
path Pg}jl that has v; as its start vertex. The third arc connects vo to the first
inner node vs on path Pjh that has only two incident arcs so far. The fourth
arc is the only arc (vs,v4) on lej2 with start vertex vs. From vy, there is an
arc to the first inner node vs on P;J_s that has only two incident arcs so far,
followed by (vs,vg) of P, . The last arc of P connects ve to ¢ (see Fig. 1). For
a negative clause ¢ = ¢; = (&, V &, V ;) we proceed in the same way, except
that we choose the inner nodes v; from the upper variable paths an , P£j2 , P£j3.

The strategy set of player p, is {Pl, P?}. We will interpret it as setting the

PO PO
0/1 0/1

Py,
o1
o1 e 0/ o1 a0/ ‘(1/1/,»—9' e 01
@) P P, @) P,
5 s o1 /
Lo Ve

0/1 o =\, 01
0/1 / :

Fig. 1. Part of the constructed network corresponding to a positive clause ¢1 = (z1 V
22 V x3). The notation a/b defines a cost per unit flow of value a for load 1 and b for
load 2. Arcs without specified values have zero cost.

variable = to true (false) if p, sends her unit of flow over P! (P?). Note that
player p. can only choose between the paths P! and P?. This is due to the order

in which the paths Pcoj are constructed. Depending on whether player p. sends

her unit of flow over path P! or P, the clause ¢ will be satisfied or not.

The second part of the network consists of all origin-destination pairs and
paths for players p1, p2, ps (see Fig. 2). Player p; can choose between paths U; =
{(s,t2), (t2,t1)} and Ly = {(s,t1)}. Player po is the only player who can split her
flow; that is, she can route her two units either both over path Uz = {(s,t2)},
both over path Ly = {(s,t1), (1, t2}, or one unit on the upper and the other unit
on the lower path; i.e., So = {Ls,Us, LUs}. Finally, player p3 has three possible
paths to choose from. The upper path Us shares an arc with each clause path P}
and has some additional arcs to connect these. The paths M3 = {(s,t2), (t2,t3)}
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4/8/12/13

5719113

Fig. 2. Part of the constructed network that is used by players p1, p2, and ps. A single
number a on an arc defines a constant cost a per unit flow for this arc.

and Ls = {(s,t1), (t1,%2), (t2,t3)} have only arcs with the paths of p; and ps in
common. The cost functions are defined in Fig. 2.

Given a satisfying truth assignment, we define a strategy state s of the game by
setting the strategy of player p, to be P} for a true variable z, and P? otherwise.
Each player p. plays Pl. Furthermore, s = L1, so = Us, and s3 = M3. It is
easy to show that no player can decrease her cost by unilaterally switching to
another strategy; i.e., the defined strategy configuration is a pure-strategy Nash
equilibrium.

For the other direction, we first observe that any pure-strategy Nash equi-
librium s of the game has the following properties: (a) player ps does not use
path Us, (b) for the cost of player ps we have c3(s) > 8, and (c) each player p.
routes her unit flow over path P!. Property (a) follows from the fact that the sub-
game shown in Fig. 3 with players p; and p2 only does not have a pure-strategy
Nash equilibrium. Property (a) implies (b), and property (c) can be proved by
contradiction assuming (a) and (b). We claim that the truth assignment that

LL LU uu
0/6/7/13

t -
L 934 —» 7,11 -—— 5,12

A

U 0,30 — 6,15—» 7,14
v

4/8/12/13

5/7/9/13

Fig. 3. Sub-game with two players without pure-strategy Nash equilibrium (Papadim-
itriou 2003)

sets a variable x to true if the corresponding player uses P}, and = to false oth-
erwise, satisfies all clauses. Suppose for a positive clause ¢ = (z1 V z2 V x3) that
all variables are false; i.e., s;, = Pgi for ¢ = 1,2,3. By property (c), player p.
uses P!. Because of (a), her current cost is c.(s) = 3. Choosing path P? instead
would decrease the cost to zero, which contradicts the assumption of s being a
Nash equilibrium. A similar argument holds for a negative clause. a
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3 Local-Effect Games

A local-effect game is a tuple (N, A, F) where N = {1,2,...,n} is the set of
players, A is a common set of actions (strategies) available to each player, and
F is a set of cost functions. For each pair of actions a,a’ € A, the function Fy , :
Z, — R expresses the impact of action a’ on the cost of action a, which depends
only on the number of players that choose action a’. For a,a’ € A with a #
a', Fy 4 is called a local-effect function, and it is assumed that F, ,(0) = 0.
Moreover, the local-effect function Fy , is either strictly increasing or identical
zero. If F/ o is not identical zero, then this is also the case for Fy o/. In other
words, if action a has an effect on action a’, then the converse is also true. For a
given strategy state s = (s1, S2,...,S,) € A", n, denotes the number of players
playing action a in s. The cost to a player ¢ € N for playing action s; in strategy
state s is given by c;(s) = Fy, 5,(ns,) + 3 4c 4,05, La,si (a). If the local-effect
functions Fy/ , are zero for all a # a’, the local-effect game is equivalent to a
symmetric network congestion game with only parallel arcs.

A local-effect game is called a bidirectional local-effect game if for all a,a’ €
A, a # d, and for all x € Zy, Fy o(z) = F, o (z). Leyton-Brown and Ten-
nenholtz (2003) gave a characterization of local-effect games that have an exact
potential function and which are therefore guaranteed to possess pure-strategy
Nash equilibria. One of these subclasses are bidirectional local-effect games with
linear local-effect functions. However, without linear local-effect functions, de-
ciding the existence is hard.

3.1 Computational Complexity

Theorem 4. The problem of deciding whether a bidirectional local-effect game
has a pure-strategy Nash equilibrium is NP-complete.

The proof will be given in the full version of this paper. The next result implies
that computing a pure-strategy Nash equilibrium for a bidirectional local-effect
game with linear local-